{"title":"Vapor–liquid phase equilibrium prediction for mixtures of binary systems using graph neural networks","authors":"Jinke Sun, Jianfei Xue, Guangyu Yang, Jingde Li, Wei Zhang","doi":"10.1002/aic.18637","DOIUrl":null,"url":null,"abstract":"Vapor–liquid phase equilibrium (VLE) plays a crucial role in chemical process design, process equipment control, and experimental process simulation. However, experimental acquisition of VLE data is a challenging and complex task. As an alternative to experimentation, VLE data prediction offers great convenience and utility. In this article, an artificial intelligence network is proposed to predict the temperature and the vapor phase composition of binary mixtures. We constructed a graph neural network (GNN) and designed an uncertainty-aware learning and inference mechanism (UALF) in the prediction process. The model was tested on both a self-constructed dataset and a publicly available dataset. The results demonstrate that the proposed method effectively reveals the phase equilibrium properties of the target data. This work presents a novel approach for predicting vapor–liquid phase equilibrium in binary systems and proposes innovative ideas for investigating phase equilibrium mechanisms and principles.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"61 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18637","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Vapor–liquid phase equilibrium (VLE) plays a crucial role in chemical process design, process equipment control, and experimental process simulation. However, experimental acquisition of VLE data is a challenging and complex task. As an alternative to experimentation, VLE data prediction offers great convenience and utility. In this article, an artificial intelligence network is proposed to predict the temperature and the vapor phase composition of binary mixtures. We constructed a graph neural network (GNN) and designed an uncertainty-aware learning and inference mechanism (UALF) in the prediction process. The model was tested on both a self-constructed dataset and a publicly available dataset. The results demonstrate that the proposed method effectively reveals the phase equilibrium properties of the target data. This work presents a novel approach for predicting vapor–liquid phase equilibrium in binary systems and proposes innovative ideas for investigating phase equilibrium mechanisms and principles.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.