Chrysa Soteriou, Mengfan Xu, Simon D. Connell, Arwen I.I. Tyler, Antreas C. Kalli, James L. Thorne
{"title":"Two cooperative lipid binding sites within the pleckstrin homology domain are necessary for AKT binding and stabilization to the plasma membrane","authors":"Chrysa Soteriou, Mengfan Xu, Simon D. Connell, Arwen I.I. Tyler, Antreas C. Kalli, James L. Thorne","doi":"10.1016/j.str.2024.10.020","DOIUrl":null,"url":null,"abstract":"Almost four decades after the identification of the AKT protein and understanding of its role in cancer, barriers remain in the translation of AKT inhibitors for clinical applications. Here, we provide new molecular insight into the first step of AKT activation where AKT binds to the plasma membrane and its orientation is stabilized in a bilayer with lateral heterogeneity (L<sub>o</sub>-L<sub>d</sub> phase coexistence). We have applied molecular dynamic simulations and molecular and cell biology approaches, and demonstrate that AKT recruitment to the membrane requires a second binding site in the AKT pleckstrin homology (PH) domain that acts cooperatively with the known canonical binding site. Given the precision with which we have identified the protein-lipid interactions, the study offers new directions for AKT-targeted therapy and for testing small molecules to target these specific amino acid-PIP molecular bonds.","PeriodicalId":22168,"journal":{"name":"Structure","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.str.2024.10.020","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Almost four decades after the identification of the AKT protein and understanding of its role in cancer, barriers remain in the translation of AKT inhibitors for clinical applications. Here, we provide new molecular insight into the first step of AKT activation where AKT binds to the plasma membrane and its orientation is stabilized in a bilayer with lateral heterogeneity (Lo-Ld phase coexistence). We have applied molecular dynamic simulations and molecular and cell biology approaches, and demonstrate that AKT recruitment to the membrane requires a second binding site in the AKT pleckstrin homology (PH) domain that acts cooperatively with the known canonical binding site. Given the precision with which we have identified the protein-lipid interactions, the study offers new directions for AKT-targeted therapy and for testing small molecules to target these specific amino acid-PIP molecular bonds.
期刊介绍:
Structure aims to publish papers of exceptional interest in the field of structural biology. The journal strives to be essential reading for structural biologists, as well as biologists and biochemists that are interested in macromolecular structure and function. Structure strongly encourages the submission of manuscripts that present structural and molecular insights into biological function and mechanism. Other reports that address fundamental questions in structural biology, such as structure-based examinations of protein evolution, folding, and/or design, will also be considered. We will consider the application of any method, experimental or computational, at high or low resolution, to conduct structural investigations, as long as the method is appropriate for the biological, functional, and mechanistic question(s) being addressed. Likewise, reports describing single-molecule analysis of biological mechanisms are welcome.
In general, the editors encourage submission of experimental structural studies that are enriched by an analysis of structure-activity relationships and will not consider studies that solely report structural information unless the structure or analysis is of exceptional and broad interest. Studies reporting only homology models, de novo models, or molecular dynamics simulations are also discouraged unless the models are informed by or validated by novel experimental data; rationalization of a large body of existing experimental evidence and making testable predictions based on a model or simulation is often not considered sufficient.