Fátima Santillán, Carlie Charron, Betty Galarreta, Leonard G Luyt
{"title":"Tailored Peptide Nanomaterials for Receptor Targeted Prostate Cancer Imaging","authors":"Fátima Santillán, Carlie Charron, Betty Galarreta, Leonard G Luyt","doi":"10.1039/d4nr03273j","DOIUrl":null,"url":null,"abstract":"We report the development of a peptide-based optical nanoprobe specifically tailored for prostate cancer imaging. The imaging probe is comprised of cyclic peptide nanotubes, formed via the aqueous co-assembly of four cyclic D,L-alternating octapeptides. The inherent properties of these cyclic building blocks have been carefully selected to enhance their efficacy in imaging applications, through the addition of a cancer targeting peptide and a fluorescent dye. Comprehensive characterization using scanning electron microscopy (FESEM) and low-voltage transmission electron microscopy (LV-TEM) confirms the formation of nanotubes through co-assembly of the cyclic peptides. The resulting nanotubes show an average diameter of 28 nm. Circular dichroism (CD) spectroscopy validates the formation of stable beta-sheet hydrogen bonding structures at both 20 and 37 ºC, ensuring their suitability for biomedical applications. Evaluation of PSMA-binding specificity of the resulting peptide nanotubes is assessed using confocal fluorescence microscopy demonstrating receptor-mediated uptake in prostate cancer cells. We anticipate this strategy will provide the basis for the utilization of co-assembled systems for advancing molecular imaging techniques in prostate cancer and other cancers.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"28 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr03273j","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We report the development of a peptide-based optical nanoprobe specifically tailored for prostate cancer imaging. The imaging probe is comprised of cyclic peptide nanotubes, formed via the aqueous co-assembly of four cyclic D,L-alternating octapeptides. The inherent properties of these cyclic building blocks have been carefully selected to enhance their efficacy in imaging applications, through the addition of a cancer targeting peptide and a fluorescent dye. Comprehensive characterization using scanning electron microscopy (FESEM) and low-voltage transmission electron microscopy (LV-TEM) confirms the formation of nanotubes through co-assembly of the cyclic peptides. The resulting nanotubes show an average diameter of 28 nm. Circular dichroism (CD) spectroscopy validates the formation of stable beta-sheet hydrogen bonding structures at both 20 and 37 ºC, ensuring their suitability for biomedical applications. Evaluation of PSMA-binding specificity of the resulting peptide nanotubes is assessed using confocal fluorescence microscopy demonstrating receptor-mediated uptake in prostate cancer cells. We anticipate this strategy will provide the basis for the utilization of co-assembled systems for advancing molecular imaging techniques in prostate cancer and other cancers.
期刊介绍:
Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.