A solid-state electrolyte based on electrochemically active LiMn2O4 for lithium metal batteries†

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materials Chemistry A Pub Date : 2024-11-05 DOI:10.1039/D4TA05743K
Jingzhen Du, Zhichao Chen, Bohao Peng, Zewen Sun, Wenzhuo Wu, Qi Zhou, Shuang Xia, Lili Liu, Lijun Fu, Yuhui Chen, Tao Wang and Yuping Wu
{"title":"A solid-state electrolyte based on electrochemically active LiMn2O4 for lithium metal batteries†","authors":"Jingzhen Du, Zhichao Chen, Bohao Peng, Zewen Sun, Wenzhuo Wu, Qi Zhou, Shuang Xia, Lili Liu, Lijun Fu, Yuhui Chen, Tao Wang and Yuping Wu","doi":"10.1039/D4TA05743K","DOIUrl":null,"url":null,"abstract":"<p >The key to the practical application of lithium metal batteries (LMBs) lies in developing solid state electrolytes (SSEs) that are simple to prepare and exhibit excellent performance. In this work, commercial and cheap cathode material LiMn<small><sub>2</sub></small>O<small><sub>4</sub></small> (LMO) is used as an SSE and mixed with poly(vinylidene difluoride) (PVDF) to create SSEs aimed at improving interfacial stability and electronic insulation. The LMO-3 SSE, containing 30 wt% LMO, demonstrates high ionic conductivity (5.17 × 10<small><sup>−4</sup></small> S cm<small><sup>−1</sup></small> at 35 °C), low electronic conductivity (&lt;10<small><sup>−9</sup></small> S cm<small><sup>−1</sup></small>), and good interfacial contact and stability with both the lithium metal anode and LiFePO<small><sub>4</sub></small> (LFP) cathode. The Li‖LFP cell with LMO-3 exhibits good cycling stability at a current density of 0.5C (200 cycles, maintaining a discharge specific capacity of 147.7 mA h g<small><sup>−1</sup></small>, with a capacity retention rate of 96.0% and a coulombic efficiency of 99.8%). This study provides a direction for the application of LMO in high-performance SSEs and LMBs, paving another economical route to the commercialization of solid-state lithium metal batteries.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 47","pages":" 33241-33248"},"PeriodicalIF":9.5000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ta/d4ta05743k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The key to the practical application of lithium metal batteries (LMBs) lies in developing solid state electrolytes (SSEs) that are simple to prepare and exhibit excellent performance. In this work, commercial and cheap cathode material LiMn2O4 (LMO) is used as an SSE and mixed with poly(vinylidene difluoride) (PVDF) to create SSEs aimed at improving interfacial stability and electronic insulation. The LMO-3 SSE, containing 30 wt% LMO, demonstrates high ionic conductivity (5.17 × 10−4 S cm−1 at 35 °C), low electronic conductivity (<10−9 S cm−1), and good interfacial contact and stability with both the lithium metal anode and LiFePO4 (LFP) cathode. The Li‖LFP cell with LMO-3 exhibits good cycling stability at a current density of 0.5C (200 cycles, maintaining a discharge specific capacity of 147.7 mA h g−1, with a capacity retention rate of 96.0% and a coulombic efficiency of 99.8%). This study provides a direction for the application of LMO in high-performance SSEs and LMBs, paving another economical route to the commercialization of solid-state lithium metal batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于电化学活性 LiMn2O4 的固态电解质用于锂金属电池
锂金属电池(LMB)实际应用的关键在于开发制备简单、性能优异的固态电解质(SSE)。在这项研究中,商业化的廉价正极材料锰酸锂(LMO)被用作固态电解质,并与聚偏二氟乙烯(PVDF)混合制成固态电解质,旨在提高界面稳定性和电子绝缘性。含有 30 wt.% LMO 的 LMO-3 SSE 具有高离子电导率(35 °C 时为 5.17 × 10-4 S cm-1)、低电子电导率(< 10-9 S cm-1)以及与锂金属阳极和磷酸铁锂(LFP)阴极良好的界面接触性和稳定性。含有 LMO-3 的锂离子电池在 0.5 C 的电流密度下具有良好的循环稳定性(循环 200 次,放电比容量保持在 147.7 mAh g-1,容量保持率为 96.0%,库仑效率为 99.8%)。这项研究为 LMO 在高性能 SSE 和 LMB 中的应用指明了方向,为固态锂金属电池的商业化铺平了另一条经济之路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
期刊最新文献
Elastic phase-change fibers with thermal energy storage based on a tunable TPU aerogel network constructed via a universal ambient pressure drying strategy Boosting Initial Coulombic Efficiency in Cobalt-Free Li-Rich Layered Oxides via Facile Gas-Solid Interface Modification Large-Volume Stable Bubble-Sliding Triboelectric Nanogenerator for High-Efficiency Low-Frequency Mechanical Energy Harvesting Enhanced energy density of polymer dielectrics at high temperature by building a B–N coordinated supramolecular network Electrochemical Induced V5S8/V2O5 Heterostructures Manipulate Redox Kinetics for Aqueous Zinc-Ion Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1