Structure, humidity adaptivity, and elasticity of hydrogen-bonded complexes formed by self-assembly of a triblock copolymer and a homopolymer†

IF 4.1 2区 化学 Q2 POLYMER SCIENCE Polymer Chemistry Pub Date : 2024-10-02 DOI:10.1039/d4py00959b
Weijie Wang , Hanxin Jian , Hao Huang , Fengfeng Feng , Qingye Meng , Yuli Li , Gang Chen , Shuguang Yang
{"title":"Structure, humidity adaptivity, and elasticity of hydrogen-bonded complexes formed by self-assembly of a triblock copolymer and a homopolymer†","authors":"Weijie Wang ,&nbsp;Hanxin Jian ,&nbsp;Hao Huang ,&nbsp;Fengfeng Feng ,&nbsp;Qingye Meng ,&nbsp;Yuli Li ,&nbsp;Gang Chen ,&nbsp;Shuguang Yang","doi":"10.1039/d4py00959b","DOIUrl":null,"url":null,"abstract":"<div><div>Specific aggregation structures largely influence the macro-physical performances of materials. Small changes in molecular components, conformation, crystallisation and microphase transitions can dramatically alter material properties. Here, we combine the triblock copolymer polystyrene-<em>b</em>-poly(ethylene oxide)-<em>b</em>-polystyrene (SES) with the homopolymer poly(acrylic acid) (PAA), fabricating elastomers with multi-hierarchical architectures. Unlike the single molecular chain of traditional elastomers, the flexible domain of these elastomers is formed <em>via</em> hydrogen bonding of the complex chains (A/E) of poly(ethylene oxide) (PEO) and PAA. The polystyrene (PS) blocks are microphase-separated and hydrophobically associated, providing physical crosslinks among the flexible complex chains and enhancing the strength of the elastomers. The influence of the molecular weight of the PS blocks, molecular chain length of PAA, and relative humidity on the elastomer's macro-physical properties was revealed using small-angle X-ray scattering, transmission electron microscopy, differential scanning calorimetry, Fourier transform infrared spectroscopy, and tensile stress–strain measurements. The PS block forms a hard spherical domain that affects the hydrogen-bonding complex behaviours of the PAA and PEO segments. Enlarging the PS sphere would hinder the formation of the PAA/PEO complex, but this trend is mitigated by shortening the PAA chain length. Hydrophobic steric hindrance by the PS sphere disturbs the association behaviours of the PAA and PEO segments. These structural differences result in different mechanical properties of the elastomers. Moreover, the elastomers adapt to changes in the relative humidity and show an obvious humidity-induced glass transition. The elastomers possess good elasticity properties under low and high humidity conditions. The methods and ideas presented in this study will enable the construction of new types of elastomers.</div></div>","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":"15 46","pages":"Pages 4710-4720"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1759995424004030","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Specific aggregation structures largely influence the macro-physical performances of materials. Small changes in molecular components, conformation, crystallisation and microphase transitions can dramatically alter material properties. Here, we combine the triblock copolymer polystyrene-b-poly(ethylene oxide)-b-polystyrene (SES) with the homopolymer poly(acrylic acid) (PAA), fabricating elastomers with multi-hierarchical architectures. Unlike the single molecular chain of traditional elastomers, the flexible domain of these elastomers is formed via hydrogen bonding of the complex chains (A/E) of poly(ethylene oxide) (PEO) and PAA. The polystyrene (PS) blocks are microphase-separated and hydrophobically associated, providing physical crosslinks among the flexible complex chains and enhancing the strength of the elastomers. The influence of the molecular weight of the PS blocks, molecular chain length of PAA, and relative humidity on the elastomer's macro-physical properties was revealed using small-angle X-ray scattering, transmission electron microscopy, differential scanning calorimetry, Fourier transform infrared spectroscopy, and tensile stress–strain measurements. The PS block forms a hard spherical domain that affects the hydrogen-bonding complex behaviours of the PAA and PEO segments. Enlarging the PS sphere would hinder the formation of the PAA/PEO complex, but this trend is mitigated by shortening the PAA chain length. Hydrophobic steric hindrance by the PS sphere disturbs the association behaviours of the PAA and PEO segments. These structural differences result in different mechanical properties of the elastomers. Moreover, the elastomers adapt to changes in the relative humidity and show an obvious humidity-induced glass transition. The elastomers possess good elasticity properties under low and high humidity conditions. The methods and ideas presented in this study will enable the construction of new types of elastomers.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三嵌段共聚物和均聚物自组装形成的氢键复合物的结构、湿度适应性和弹性
特定的聚集结构在很大程度上影响着材料的宏观物理性能。分子成分、构象、结晶和微相转变的微小变化都会极大地改变材料的性能。在这里,我们将三嵌段共聚物聚苯乙烯-b-聚环氧乙烷-b-聚苯乙烯(SES)与均聚物聚丙烯酸(PAA)相结合,制造出具有多层结构的弹性体。与传统弹性体的单分子链不同,这些弹性体的柔性域是通过聚(环氧乙烷)(PEO)和 PAA 的复合链 (A/E) 的氢键作用形成的。聚苯乙烯(PS)块具有微相分离和亲水性,可在柔性复合链之间产生物理交联,从而增强弹性体的强度。利用小角 X 射线散射、透射电子显微镜、差示扫描量热仪、傅立叶变换红外光谱和拉伸应力应变测量法,研究了 PS 块的分子量、PAA 分子链长和相对湿度对弹性体宏观物理性质的影响。PS 块形成了一个坚硬的球形域,影响 PAA 和 PEO 段的氢键复合行为。增大 PS 球体会阻碍 PAA/PEO 复合物的形成,但缩短 PAA 链长可以缓解这一趋势。PS 球体的疏水立体阻碍干扰了 PAA 和 PEO 段的结合行为。这些结构差异导致弹性体具有不同的机械性能。此外,弹性体还能适应相对湿度的变化,并表现出明显的湿度诱导玻璃化转变。在较低和较高湿度条件下,弹性体都具有良好的弹性特性。本研究提出的方法和观点将有助于制造新型弹性体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymer Chemistry
Polymer Chemistry POLYMER SCIENCE-
CiteScore
8.60
自引率
8.70%
发文量
535
审稿时长
1.7 months
期刊介绍: Polymer Chemistry welcomes submissions in all areas of polymer science that have a strong focus on macromolecular chemistry. Manuscripts may cover a broad range of fields, yet no direct application focus is required.
期刊最新文献
Back cover Recent Progress in Nonstoichiometric Step-growth Polymerization 3D Printable Biopolymers as Pelvic Floor Scaffolds Synthesis of periodic polyolefins based on anionic alternating copolymerization Converting high modulus water-based elastomeric core–shell nanoparticle films from viscoelastic to predominantly elastic using di-epoxide crosslinking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1