Chromosome-level reference genome for the Jonah crab, Cancer borealis.

IF 2.1 3区 生物学 Q3 GENETICS & HEREDITY G3: Genes|Genomes|Genetics Pub Date : 2024-11-06 DOI:10.1093/g3journal/jkae254
Jennifer M Polinski, Timothy P O'Donnell, Andrea G Bodnar
{"title":"Chromosome-level reference genome for the Jonah crab, Cancer borealis.","authors":"Jennifer M Polinski, Timothy P O'Donnell, Andrea G Bodnar","doi":"10.1093/g3journal/jkae254","DOIUrl":null,"url":null,"abstract":"<p><p>The Jonah crab, Cancer borealis, is integral to marine ecosystems and supports a rapidly growing commercial fishery in the northwest Atlantic Ocean. This species also has a long history as a model for neuroscience that has expanded our understanding of central pattern generators, neuromodulation, synaptic plasticity, and the connectivity of neural circuits. Here we present a highly contiguous reference genome for the Jonah crab that will provide an essential resource to advance fisheries, conservation, and biomedical research. Using a combination of PacBio long-read sequencing and Omni-C scaffolding, we generated a final genome assembly spanning 691 Mb covering 51 chromosome-length scaffolds and 106 additional contigs. Benchmarking Universal Single-Copy Ortholog (BUSCO) analysis indicated a high-quality assembly with a completeness score of 90.8%. Repeat annotation identified 1,649 repeat families making up 48.27% of the Jonah crab genome. Gene model predictions annotated 24,830 protein coding genes with a 92.3% BUSCO score. Gene family evolution analysis revealed the expansion of gene families associated with nervous system function, and targeted analysis revealed an extensive repertoire of neural genes. The Jonah crab genome will not only provide a resource for neuroscience research but will also serve as a foundation to investigate adaptation to stress and population structure to support sustainable fisheries management during this time of rapidly changing environmental conditions in the northwest Atlantic Ocean.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"G3: Genes|Genomes|Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/g3journal/jkae254","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

The Jonah crab, Cancer borealis, is integral to marine ecosystems and supports a rapidly growing commercial fishery in the northwest Atlantic Ocean. This species also has a long history as a model for neuroscience that has expanded our understanding of central pattern generators, neuromodulation, synaptic plasticity, and the connectivity of neural circuits. Here we present a highly contiguous reference genome for the Jonah crab that will provide an essential resource to advance fisheries, conservation, and biomedical research. Using a combination of PacBio long-read sequencing and Omni-C scaffolding, we generated a final genome assembly spanning 691 Mb covering 51 chromosome-length scaffolds and 106 additional contigs. Benchmarking Universal Single-Copy Ortholog (BUSCO) analysis indicated a high-quality assembly with a completeness score of 90.8%. Repeat annotation identified 1,649 repeat families making up 48.27% of the Jonah crab genome. Gene model predictions annotated 24,830 protein coding genes with a 92.3% BUSCO score. Gene family evolution analysis revealed the expansion of gene families associated with nervous system function, and targeted analysis revealed an extensive repertoire of neural genes. The Jonah crab genome will not only provide a resource for neuroscience research but will also serve as a foundation to investigate adaptation to stress and population structure to support sustainable fisheries management during this time of rapidly changing environmental conditions in the northwest Atlantic Ocean.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
约拿蟹染色体级参考基因组。
乔纳蟹(Cancer borealis)是海洋生态系统中不可或缺的物种,支撑着大西洋西北部快速增长的商业渔业。该物种作为神经科学的模型也有着悠久的历史,它拓展了我们对中枢模式发生器、神经调节、突触可塑性和神经回路连接的理解。在这里,我们展示了高度连续的约拿蟹参考基因组,它将为推动渔业、自然保护和生物医学研究提供重要资源。通过结合使用 PacBio 长线程测序和 Omni-C 支架,我们生成了跨度为 691 Mb 的最终基因组装配,涵盖 51 个染色体长度支架和 106 个附加等位基因。通用单拷贝同源物(BUSCO)基准分析表明这是一个高质量的组装,完整性得分高达 90.8%。重复注释确定了 1649 个重复家族,占约拿蟹基因组的 48.27%。基因模型预测注释了 24,830 个蛋白质编码基因,BUSCO 得分为 92.3%。基因家族进化分析表明,与神经系统功能相关的基因家族扩大了,而定向分析表明,神经基因的范围很广。约拿蟹基因组不仅为神经科学研究提供了资源,还将作为研究压力适应性和种群结构的基础,为西北大西洋环境条件快速变化时期的可持续渔业管理提供支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
G3: Genes|Genomes|Genetics
G3: Genes|Genomes|Genetics GENETICS & HEREDITY-
CiteScore
5.10
自引率
3.80%
发文量
305
审稿时长
3-8 weeks
期刊介绍: G3: Genes, Genomes, Genetics provides a forum for the publication of high‐quality foundational research, particularly research that generates useful genetic and genomic information such as genome maps, single gene studies, genome‐wide association and QTL studies, as well as genome reports, mutant screens, and advances in methods and technology. The Editorial Board of G3 believes that rapid dissemination of these data is the necessary foundation for analysis that leads to mechanistic insights. G3, published by the Genetics Society of America, meets the critical and growing need of the genetics community for rapid review and publication of important results in all areas of genetics. G3 offers the opportunity to publish the puzzling finding or to present unpublished results that may not have been submitted for review and publication due to a perceived lack of a potential high-impact finding. G3 has earned the DOAJ Seal, which is a mark of certification for open access journals, awarded by DOAJ to journals that achieve a high level of openness, adhere to Best Practice and high publishing standards.
期刊最新文献
CATG: Software for Collinearity-Based Genome Assembly Correction. A collection of split-Gal4 drivers targeting conserved signaling ligands in Drosophila. Wild yeast isolation by middle school students reveals features of populations residing on North American oaks. GenoTools: An Open-Source Python Package for Efficient Genotype Data Quality Control and Analysis. Testis- and ovary-expressed polo-like kinase transcripts and gene duplications affect male fertility when expressed in the Drosophila melanogaster germline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1