Unveiling cofactor inhibition mechanisms in horse liver alcohol dehydrogenase: An allosteric driven regulation.

IF 4.5 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Bioorganic Chemistry Pub Date : 2024-10-30 DOI:10.1016/j.bioorg.2024.107932
Alice Vetrano, Matteo Capone, Matteo Farina, Francesco Gabriele, Nicoletta Spreti, Isabella Daidone
{"title":"Unveiling cofactor inhibition mechanisms in horse liver alcohol dehydrogenase: An allosteric driven regulation.","authors":"Alice Vetrano, Matteo Capone, Matteo Farina, Francesco Gabriele, Nicoletta Spreti, Isabella Daidone","doi":"10.1016/j.bioorg.2024.107932","DOIUrl":null,"url":null,"abstract":"<p><p>Horse Liver Alcohol Dehydrogenase (HLADH) is an extensively studied enzyme isolated from equine liver tissue, and holds a central role in numerous enzymatic processes, underscoring the need for thorough investigation. This study delves into the kinetic behavior and structural dynamics of HLADH, shedding light on complex mechanisms governing its catalytic activity and interactions with the cofactor. Notably, deviations from traditional Michaelis-Menten kinetics are observed, manifesting as a slowdown in catalytic rate under high NADH concentrations. Utilizing molecular dynamics simulations, an allosteric site is identified, clarifying how excessive cofactor levels impact protein dynamics and catalytic properties. Structural alterations induced by inhibitory NADH concentrations are revealed, indicating reduced protein flexibility and modifications in catalytic cavity size, thereby elucidating the inhibitory mechanism at high cofactor concentrations. This comprehensive investigation unveils intricate facets of HLADH's catalytic mechanisms, providing a platform for further exploration in enzymology and biocatalysis.</p>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.bioorg.2024.107932","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Horse Liver Alcohol Dehydrogenase (HLADH) is an extensively studied enzyme isolated from equine liver tissue, and holds a central role in numerous enzymatic processes, underscoring the need for thorough investigation. This study delves into the kinetic behavior and structural dynamics of HLADH, shedding light on complex mechanisms governing its catalytic activity and interactions with the cofactor. Notably, deviations from traditional Michaelis-Menten kinetics are observed, manifesting as a slowdown in catalytic rate under high NADH concentrations. Utilizing molecular dynamics simulations, an allosteric site is identified, clarifying how excessive cofactor levels impact protein dynamics and catalytic properties. Structural alterations induced by inhibitory NADH concentrations are revealed, indicating reduced protein flexibility and modifications in catalytic cavity size, thereby elucidating the inhibitory mechanism at high cofactor concentrations. This comprehensive investigation unveils intricate facets of HLADH's catalytic mechanisms, providing a platform for further exploration in enzymology and biocatalysis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示马肝醇脱氢酶的辅因子抑制机制:异构驱动的调控
马肝醇脱氢酶(HLADH)是从马肝组织中分离出来的一种被广泛研究的酶,在许多酶解过程中发挥着核心作用,因此需要进行深入研究。本研究深入探讨了 HLADH 的动力学行为和结构动态,揭示了其催化活性以及与辅助因子相互作用的复杂机制。值得注意的是,研究人员观察到 HLADH 偏离了传统的 Michaelis-Menten 动力学,表现为在 NADH 浓度较高的情况下催化速率减慢。利用分子动力学模拟,确定了一个异构位点,阐明了过高的辅助因子水平如何影响蛋白质动力学和催化特性。抑制性 NADH 浓度引起的结构变化表明,蛋白质的灵活性降低,催化空腔的大小发生变化,从而阐明了高浓度辅助因子的抑制机制。这项全面的研究揭示了 HLADH 催化机理的复杂面,为进一步探索酶学和生物催化提供了一个平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioorganic Chemistry
Bioorganic Chemistry 生物-生化与分子生物学
CiteScore
9.70
自引率
3.90%
发文量
679
审稿时长
31 days
期刊介绍: Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry. For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature. The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.
期刊最新文献
Synthesis of S-alkylated oxadiazole bearing imidazo[2,1-b]thiazole derivatives targeting breast cancer: In vitro cytotoxic evaluation and in vivo radioactive tracing studies. Computational Design, Synthesis, and Bioevaluation of 2-(Pyrimidin-4-yl) oxazole-4-carboxamide Derivatives: Dual Inhibition of EGFRWT and EGFRT790M with ADMET Profiling. Unveiling cofactor inhibition mechanisms in horse liver alcohol dehydrogenase: An allosteric driven regulation. Indole-based COX-2 inhibitors: A decade of advances in inflammation, cancer, and Alzheimer's therapy. Synergy trap for guardian angels of DNA: Unraveling the anticancer potential of phthalazinone-thiosemicarbazone hybrids through dual PARP-1 and TOPO-I inhibition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1