Alice Vetrano, Matteo Capone, Matteo Farina, Francesco Gabriele, Nicoletta Spreti, Isabella Daidone
{"title":"Unveiling cofactor inhibition mechanisms in horse liver alcohol dehydrogenase: An allosteric driven regulation.","authors":"Alice Vetrano, Matteo Capone, Matteo Farina, Francesco Gabriele, Nicoletta Spreti, Isabella Daidone","doi":"10.1016/j.bioorg.2024.107932","DOIUrl":null,"url":null,"abstract":"<p><p>Horse Liver Alcohol Dehydrogenase (HLADH) is an extensively studied enzyme isolated from equine liver tissue, and holds a central role in numerous enzymatic processes, underscoring the need for thorough investigation. This study delves into the kinetic behavior and structural dynamics of HLADH, shedding light on complex mechanisms governing its catalytic activity and interactions with the cofactor. Notably, deviations from traditional Michaelis-Menten kinetics are observed, manifesting as a slowdown in catalytic rate under high NADH concentrations. Utilizing molecular dynamics simulations, an allosteric site is identified, clarifying how excessive cofactor levels impact protein dynamics and catalytic properties. Structural alterations induced by inhibitory NADH concentrations are revealed, indicating reduced protein flexibility and modifications in catalytic cavity size, thereby elucidating the inhibitory mechanism at high cofactor concentrations. This comprehensive investigation unveils intricate facets of HLADH's catalytic mechanisms, providing a platform for further exploration in enzymology and biocatalysis.</p>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.bioorg.2024.107932","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Horse Liver Alcohol Dehydrogenase (HLADH) is an extensively studied enzyme isolated from equine liver tissue, and holds a central role in numerous enzymatic processes, underscoring the need for thorough investigation. This study delves into the kinetic behavior and structural dynamics of HLADH, shedding light on complex mechanisms governing its catalytic activity and interactions with the cofactor. Notably, deviations from traditional Michaelis-Menten kinetics are observed, manifesting as a slowdown in catalytic rate under high NADH concentrations. Utilizing molecular dynamics simulations, an allosteric site is identified, clarifying how excessive cofactor levels impact protein dynamics and catalytic properties. Structural alterations induced by inhibitory NADH concentrations are revealed, indicating reduced protein flexibility and modifications in catalytic cavity size, thereby elucidating the inhibitory mechanism at high cofactor concentrations. This comprehensive investigation unveils intricate facets of HLADH's catalytic mechanisms, providing a platform for further exploration in enzymology and biocatalysis.
期刊介绍:
Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry.
For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature.
The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.