Palladium Single Atom-supported Covalent Organic Frameworks for Aqueous-phase Hydrogenative Hydrogenolysis of Aromatic Aldehydes via Hydrogen Heterolysis.

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-11-06 DOI:10.1002/anie.202418790
Zhihao Ouyang, Guan Sheng, Yao Zhong, Jun Wang, Jianxin Cai, Shuguang Deng, Qiang Deng
{"title":"Palladium Single Atom-supported Covalent Organic Frameworks for Aqueous-phase Hydrogenative Hydrogenolysis of Aromatic Aldehydes via Hydrogen Heterolysis.","authors":"Zhihao Ouyang, Guan Sheng, Yao Zhong, Jun Wang, Jianxin Cai, Shuguang Deng, Qiang Deng","doi":"10.1002/anie.202418790","DOIUrl":null,"url":null,"abstract":"<p><p>Developing a method for the tandem hydrogenative hydrogenolysis of bio-based furfuryl aldehydes to methylfurans is crucial for synthesizing sustainable biofuels and chemicals; however, it poses a challenge due to the easy hydrogenation of the C=C bond and difficult cleavage of the C-O bond. Herein, a palladium (Pd) single-atom-supported covalent organic framework was fabricated and showed a unique 2,5-dimethylfuran yield of up to 98.2 % when reacted with 5-methyl furfuryl aldehyde in an unprecedented water solvent at 30 °C. Furthermore, it exhibited excellent catalytic universality while converting various furfuryl-, benzyl-, and heterocyclic aldehydes at room temperature. The analysis of the catalytic mechanism confirmed that H<sub>2</sub> was heterolytically activated on the Pd-N pair and triggered the keto-enol tautomerism of the covalent organic frameworks (COFs) host, resulting in H<sup>-</sup>-Pd⋅⋅⋅O-H<sup>+</sup> sites. These sites served as novel asymmetric hydrogenation sites for the C=O group and hydrogenolysis sites for the C-OH group through a scarce SN<sub>2</sub> mechanism. This study demonstrated remarkable bifunctional catalysis through the H<sub>2</sub>-induced keto-enol tautomerism of COF catalysts for the atypical preparation of methyl aromatics in a water solvent at room temperature.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":" ","pages":"e202418790"},"PeriodicalIF":16.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202418790","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing a method for the tandem hydrogenative hydrogenolysis of bio-based furfuryl aldehydes to methylfurans is crucial for synthesizing sustainable biofuels and chemicals; however, it poses a challenge due to the easy hydrogenation of the C=C bond and difficult cleavage of the C-O bond. Herein, a palladium (Pd) single-atom-supported covalent organic framework was fabricated and showed a unique 2,5-dimethylfuran yield of up to 98.2 % when reacted with 5-methyl furfuryl aldehyde in an unprecedented water solvent at 30 °C. Furthermore, it exhibited excellent catalytic universality while converting various furfuryl-, benzyl-, and heterocyclic aldehydes at room temperature. The analysis of the catalytic mechanism confirmed that H2 was heterolytically activated on the Pd-N pair and triggered the keto-enol tautomerism of the covalent organic frameworks (COFs) host, resulting in H--Pd⋅⋅⋅O-H+ sites. These sites served as novel asymmetric hydrogenation sites for the C=O group and hydrogenolysis sites for the C-OH group through a scarce SN2 mechanism. This study demonstrated remarkable bifunctional catalysis through the H2-induced keto-enol tautomerism of COF catalysts for the atypical preparation of methyl aromatics in a water solvent at room temperature.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钯单原子支撑共价有机框架用于通过氢异构分解芳香族醛的水相氢化分解。
开发一种将生物基糠醛串联加氢水解为甲基呋喃的方法,对于合成可持续生物燃料和化学品至关重要;然而,由于 C=C 键容易加氢而 C-O 键难以裂解,这给该方法带来了挑战。本文制备了一种钯(Pd)单原子支撑的共价有机框架,在 30°C 的前所未有的水溶剂中与 5-甲基糠醛反应时,2,5-二甲基呋喃的产率高达 98.2%。此外,该催化剂在室温下转化各种糠醛、苄基醛和杂环醛时,表现出极佳的催化通用性。对催化机理的分析表明,H2 在 Pd-N 对上异源活化,并引发共价有机框架(COFs)宿主的酮烯醇同分异构,从而产生 H-Pd∙∙∙O-H+ 位点。通过稀缺的 SN2 机制,这些位点成为 C=O 基团的新型不对称氢化位点和 C-OH 基团的氢解位点。这项研究通过 COF 催化剂的 H2-诱导酮烯醇同分异构现象,证明了它在室温水溶剂中非典型地制备甲基芳烃时具有显著的双功能催化作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Total Synthesis of (–)‐Cordycicadin D and 3,4‐trans‐Cordycicadins A and B: Entry to the 3,4‐trans‐Fused Cordycicadin Framework Inside Back Cover: Interface‐Triggered Spin‐Magnetic Effect in Rare Earth Intra‐particle Heterostructured Nanoalloys for Boosting Hydrogen Evolution Benzylic C(sp3)–H Phosphonylation via Dual Photo and Copper Catalysis Hypercrosslinked Metal‐Organic Polyhedra Electrolyte with High Transference Number and Fast Conduction of Li Ions O─O Radical Coupling in Ultrathin Reconstructed Co6.8Se8 Nanosheets for Effective Oxygen Evolution and Zinc-Air Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1