Qi-Hua Zhao, Yuan-Yuan Guo, Rui-Dong Wang, Xu-Hui Zhao, Hong-Bo Lv, Wei-Ming Wei, Lei Wang, Suo-Shu Zhang, Lin Du
{"title":"Construction and Comparative Research of Two MOFs Proton Conducting Materials Containing Nitro Groups.","authors":"Qi-Hua Zhao, Yuan-Yuan Guo, Rui-Dong Wang, Xu-Hui Zhao, Hong-Bo Lv, Wei-Ming Wei, Lei Wang, Suo-Shu Zhang, Lin Du","doi":"10.1002/chem.202403296","DOIUrl":null,"url":null,"abstract":"<p><p>In field of electrochemistry, there has been a growing interest in the potential applications of proton-conducting metal-organic frameworks (MOFs). Therefore, how to design and synthesize MOFs with high proton conductivity is considered crucial. In this study, two examples of nitro-containing Cd-based MOFs, MOF-1 {[Cd3(TIPE)1.5(NO3)5Cl(H2O)2]·17H2O}n and MOF-2 {[Cd(TIPE)0.5(nip)]·10H2O}n (TIPE=1,1,2,2-tetrakis(4-(1H-imidazole-1-yl)phenyl)ethene, H2nip=5-Nitroisophthalic Acid), had been successfully designed and synthesized, and their proton-conducting properties were thoroughly investigated. Notably, both materials displayed peak proton conductivity at 98% RH and 90 °C, exhibiting values of 9.13 × 10-3 and 3.00 × 10-3 S∙cm-1 for MOF-1 and MOF-2, respectively. The plausible proton conduction pathways and mechanisms were elucidated through structural analyses, water vapor adsorption studies, and the determination of activation energy (Ea) values. It was found that the difference in proton conductivity between MOF-1 and MOF-2 was mainly associated with the different water absorption rates of the samples. The uniqueness of this study was that for the first time conducted an in-depth study of the role of nitrate in proton conduction, providing new ideas for designing materials with excellent proton conductivity.</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":" ","pages":"e202403296"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/chem.202403296","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In field of electrochemistry, there has been a growing interest in the potential applications of proton-conducting metal-organic frameworks (MOFs). Therefore, how to design and synthesize MOFs with high proton conductivity is considered crucial. In this study, two examples of nitro-containing Cd-based MOFs, MOF-1 {[Cd3(TIPE)1.5(NO3)5Cl(H2O)2]·17H2O}n and MOF-2 {[Cd(TIPE)0.5(nip)]·10H2O}n (TIPE=1,1,2,2-tetrakis(4-(1H-imidazole-1-yl)phenyl)ethene, H2nip=5-Nitroisophthalic Acid), had been successfully designed and synthesized, and their proton-conducting properties were thoroughly investigated. Notably, both materials displayed peak proton conductivity at 98% RH and 90 °C, exhibiting values of 9.13 × 10-3 and 3.00 × 10-3 S∙cm-1 for MOF-1 and MOF-2, respectively. The plausible proton conduction pathways and mechanisms were elucidated through structural analyses, water vapor adsorption studies, and the determination of activation energy (Ea) values. It was found that the difference in proton conductivity between MOF-1 and MOF-2 was mainly associated with the different water absorption rates of the samples. The uniqueness of this study was that for the first time conducted an in-depth study of the role of nitrate in proton conduction, providing new ideas for designing materials with excellent proton conductivity.
期刊介绍:
Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields.
Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world.
All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times.
The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems.
Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.