Zeenat Qamar, Awais Ali Aslam, Farheen Fatima, Sadaf Ul Hassan, Muhammad Shahid Nazir, Zulfiqar Ali, Sameer Ahmed Awad, Aqeel Ahmad Khan
{"title":"Recent development towards the novel applications and future prospects for cellulose-metal organic framework hybrid materials: a review.","authors":"Zeenat Qamar, Awais Ali Aslam, Farheen Fatima, Sadaf Ul Hassan, Muhammad Shahid Nazir, Zulfiqar Ali, Sameer Ahmed Awad, Aqeel Ahmad Khan","doi":"10.1007/s11356-024-35449-2","DOIUrl":null,"url":null,"abstract":"<p><p>The hybrid material created by combining cellulose and MOF is highly promising and possesses a wide range of useful properties. Cellulose-based metal-organic frameworks (CelloMOFs) combine the inherent biocompatibility and sustainability of cellulose with the tunable porosity and diverse metal coordination chemistry of MOFs. Cellulose-MOF hybrids have countless applications in various fields, such as energy storage, water treatment, air filtration, gas adsorption, catalysis, and biomedicine. They are particularly remarkable as adsorbents that can eliminate pollutants from wastewater, including metals, oils, dyes, antibiotics, and drugs, and act as catalysts for oxidation and reduction reactions. Furthermore, they are highly efficient air filters, able to remove carbon dioxide, particulate matter, and volatile organic compounds. When it comes to energy storage, these hybrids have demonstrated exceptional results. They are also highly versatile in the realm of biomedicine, with applications such as antibacterial and drug delivery. This article provides an in-depth look at the fabrication methods, advanced applications of cellulose-MOF hybrids, and existing and future challenges.</p>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11356-024-35449-2","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The hybrid material created by combining cellulose and MOF is highly promising and possesses a wide range of useful properties. Cellulose-based metal-organic frameworks (CelloMOFs) combine the inherent biocompatibility and sustainability of cellulose with the tunable porosity and diverse metal coordination chemistry of MOFs. Cellulose-MOF hybrids have countless applications in various fields, such as energy storage, water treatment, air filtration, gas adsorption, catalysis, and biomedicine. They are particularly remarkable as adsorbents that can eliminate pollutants from wastewater, including metals, oils, dyes, antibiotics, and drugs, and act as catalysts for oxidation and reduction reactions. Furthermore, they are highly efficient air filters, able to remove carbon dioxide, particulate matter, and volatile organic compounds. When it comes to energy storage, these hybrids have demonstrated exceptional results. They are also highly versatile in the realm of biomedicine, with applications such as antibacterial and drug delivery. This article provides an in-depth look at the fabrication methods, advanced applications of cellulose-MOF hybrids, and existing and future challenges.
期刊介绍:
Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes:
- Terrestrial Biology and Ecology
- Aquatic Biology and Ecology
- Atmospheric Chemistry
- Environmental Microbiology/Biobased Energy Sources
- Phytoremediation and Ecosystem Restoration
- Environmental Analyses and Monitoring
- Assessment of Risks and Interactions of Pollutants in the Environment
- Conservation Biology and Sustainable Agriculture
- Impact of Chemicals/Pollutants on Human and Animal Health
It reports from a broad interdisciplinary outlook.