Enhanced biosynthesis of poly(3-hydroxybutyrate) in engineered strains of Pseudomonas putida via increased malonyl-CoA availability

IF 5.7 2区 生物学 Microbial Biotechnology Pub Date : 2024-11-06 DOI:10.1111/1751-7915.70044
Giusi Favoino, Nicolas Krink, Tobias Schwanemann, Nick Wierckx, Pablo I. Nikel
{"title":"Enhanced biosynthesis of poly(3-hydroxybutyrate) in engineered strains of Pseudomonas putida via increased malonyl-CoA availability","authors":"Giusi Favoino,&nbsp;Nicolas Krink,&nbsp;Tobias Schwanemann,&nbsp;Nick Wierckx,&nbsp;Pablo I. Nikel","doi":"10.1111/1751-7915.70044","DOIUrl":null,"url":null,"abstract":"<p>Malonyl-coenzyme A (CoA) is a key precursor for the biosynthesis of multiple value-added compounds by microbial cell factories, including polyketides, carboxylic acids, biofuels, and polyhydroxyalkanoates. Owing to its role as a metabolic hub, malonyl-CoA availability is limited by competition in several essential metabolic pathways. To address this limitation, we modified a genome-reduced <i>Pseudomonas putida</i> strain to increase acetyl-CoA carboxylation while limiting malonyl-CoA utilization. Genes involved in sugar catabolism and its regulation, the tricarboxylic acid (TCA) cycle, and fatty acid biosynthesis were knocked-out in specific combinations towards increasing the malonyl-CoA pool. An enzyme-coupled biosensor, based on the <i>rppA</i> gene, was employed to monitor malonyl-CoA levels in vivo. RppA is a type III polyketide synthase that converts malonyl-CoA into flaviolin, a red-colored polyketide. We isolated strains displaying enhanced malonyl-CoA availability <i>via</i> a colorimetric screening method based on the RppA-dependent red pigmentation; direct flaviolin quantification identified four engineered strains had a significant increase in malonyl-CoA levels. We further modified these strains by adding a non-canonical pathway that uses malonyl-CoA as precursor for poly(3-hydroxybutyrate) biosynthesis. These manipulations led to increased polymer accumulation in the fully engineered strains, validating our general strategy to boost the output of malonyl-CoA–dependent pathways in <i>P</i>. <i>putida</i>.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 11","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539682/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70044","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Malonyl-coenzyme A (CoA) is a key precursor for the biosynthesis of multiple value-added compounds by microbial cell factories, including polyketides, carboxylic acids, biofuels, and polyhydroxyalkanoates. Owing to its role as a metabolic hub, malonyl-CoA availability is limited by competition in several essential metabolic pathways. To address this limitation, we modified a genome-reduced Pseudomonas putida strain to increase acetyl-CoA carboxylation while limiting malonyl-CoA utilization. Genes involved in sugar catabolism and its regulation, the tricarboxylic acid (TCA) cycle, and fatty acid biosynthesis were knocked-out in specific combinations towards increasing the malonyl-CoA pool. An enzyme-coupled biosensor, based on the rppA gene, was employed to monitor malonyl-CoA levels in vivo. RppA is a type III polyketide synthase that converts malonyl-CoA into flaviolin, a red-colored polyketide. We isolated strains displaying enhanced malonyl-CoA availability via a colorimetric screening method based on the RppA-dependent red pigmentation; direct flaviolin quantification identified four engineered strains had a significant increase in malonyl-CoA levels. We further modified these strains by adding a non-canonical pathway that uses malonyl-CoA as precursor for poly(3-hydroxybutyrate) biosynthesis. These manipulations led to increased polymer accumulation in the fully engineered strains, validating our general strategy to boost the output of malonyl-CoA–dependent pathways in P. putida.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过增加丙二酰-CoA 的供应量,提高假单胞菌工程菌株中聚(3-羟基丁酸)的生物合成能力。
丙二酰辅酶 A(CoA)是微生物细胞工厂生物合成多种高附加值化合物的关键前体,包括多酮、羧酸、生物燃料和多羟基烷酸酯。由于丙二酰-CoA 作为代谢枢纽的作用,它的可用性受到几种重要代谢途径竞争的限制。为了解决这一限制,我们改造了一株基因组还原的假单胞菌,以增加乙酰-CoA 的羧化,同时限制丙二酰-CoA 的利用。为了增加丙二酰-CoA 池,我们以特定的组合敲除了参与糖代谢及其调控、三羧酸(TCA)循环和脂肪酸生物合成的基因。一种基于 rppA 基因的酶耦合生物传感器被用来监测体内丙二酰-CoA 的水平。RppA 是一种 III 型多酮合成酶,可将丙二酰-CoA 转化为黄素(一种红色多酮)。我们通过一种基于 RppA 依赖性红色素沉着的比色筛选方法,分离出了丙二酰-CoA 可用性增强的菌株;通过直接黄素定量,发现有四个工程菌株的丙二酰-CoA 水平显著增加。我们进一步改造了这些菌株,增加了一条非规范途径,将丙二酰-CoA 用作聚(3-羟基丁酸)生物合成的前体。这些操作增加了完全工程化菌株的聚合物积累,验证了我们提高 P. putida 中丙二酰-CoA 依赖性途径输出的一般策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microbial Biotechnology
Microbial Biotechnology Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
11.20
自引率
3.50%
发文量
162
审稿时长
1 months
期刊介绍: Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes
期刊最新文献
New insights for the development of efficient DNA vaccines Bacterial Catabolism of Phthalates With Estrogenic Activity Used as Plasticisers in the Manufacture of Plastic Products Combined oxygen and glucose oscillations distinctly change the transcriptional and physiological state of Escherichia coli Design, potential and limitations of conjugation-based antibacterial strategies Microbial biosensors for diagnostics, surveillance and epidemiology: Today's achievements and tomorrow's prospects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1