{"title":"AGE-RAGE Axis and Cardiovascular Diseases: Pathophysiologic Mechanisms and Prospects for Clinical Applications.","authors":"Bijian Wang, Taidou Jiang, Yaoyu Qi, Sha Luo, Ying Xia, Binyan Lang, Bolan Zhang, Shuzhan Zheng","doi":"10.1007/s10557-024-07639-0","DOIUrl":null,"url":null,"abstract":"<p><p>Advanced glycation end products (AGE), a diverse array of molecules generated through non-enzymatic glycosylation, in conjunction with the receptor of advanced glycation end products (RAGE), play a crucial role in the pathogenesis of diabetes and its associated complications. Recent studies have revealed that the AGE-RAGE axis potentially accelerated the progression of cardiovascular diseases, including heart failure, atherosclerosis, myocarditis, pulmonary hypertension, hypertension, arrhythmia, and other related conditions. The AGE-RAGE axis is intricately involved in the initiation and progression of cardiovascular diseases, independently of its engagement in diabetes. The mechanisms include oxidative stress, inflammation, alterations in autophagy flux, and mitochondrial dysfunction. Conversely, inhibition of AGE production, disruption of the binding between RAGE and its ligands, or silencing of RAGE expression could effectively impair the function of AGE-RAGE axis, thereby delaying or ameliorating the aforementioned diseases. AGE and the soluble receptor for advanced glycation end products (sRAGE) have the potential to be novel predictors of cardiovascular diseases. In this review, we provide an in-depth overview towards the biosynthetic pathway of AGE and elucidate the pathophysiological implications in various cardiovascular diseases. Furthermore, we delve into the profound role of RAGE in cardiovascular diseases, offering novel insights for further exploration of the AGE-RAGE axis and potential strategies for the prevention and management of cardiovascular disorders.</p>","PeriodicalId":9557,"journal":{"name":"Cardiovascular Drugs and Therapy","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Drugs and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10557-024-07639-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Advanced glycation end products (AGE), a diverse array of molecules generated through non-enzymatic glycosylation, in conjunction with the receptor of advanced glycation end products (RAGE), play a crucial role in the pathogenesis of diabetes and its associated complications. Recent studies have revealed that the AGE-RAGE axis potentially accelerated the progression of cardiovascular diseases, including heart failure, atherosclerosis, myocarditis, pulmonary hypertension, hypertension, arrhythmia, and other related conditions. The AGE-RAGE axis is intricately involved in the initiation and progression of cardiovascular diseases, independently of its engagement in diabetes. The mechanisms include oxidative stress, inflammation, alterations in autophagy flux, and mitochondrial dysfunction. Conversely, inhibition of AGE production, disruption of the binding between RAGE and its ligands, or silencing of RAGE expression could effectively impair the function of AGE-RAGE axis, thereby delaying or ameliorating the aforementioned diseases. AGE and the soluble receptor for advanced glycation end products (sRAGE) have the potential to be novel predictors of cardiovascular diseases. In this review, we provide an in-depth overview towards the biosynthetic pathway of AGE and elucidate the pathophysiological implications in various cardiovascular diseases. Furthermore, we delve into the profound role of RAGE in cardiovascular diseases, offering novel insights for further exploration of the AGE-RAGE axis and potential strategies for the prevention and management of cardiovascular disorders.
期刊介绍:
Designed to objectively cover the process of bench to bedside development of cardiovascular drug, device and cell therapy, and to bring you the information you need most in a timely and useful format, Cardiovascular Drugs and Therapy takes a fresh and energetic look at advances in this dynamic field.
Homing in on the most exciting work being done on new therapeutic agents, Cardiovascular Drugs and Therapy focusses on developments in atherosclerosis, hyperlipidemia, diabetes, ischemic syndromes and arrhythmias. The Journal is an authoritative source of current and relevant information that is indispensable for basic and clinical investigators aiming for novel, breakthrough research as well as for cardiologists seeking to best serve their patients.
Providing you with a single, concise reference tool acknowledged to be among the finest in the world, Cardiovascular Drugs and Therapy is listed in Web of Science and PubMed/Medline among other abstracting and indexing services. The regular articles and frequent special topical issues equip you with an up-to-date source defined by the need for accurate information on an ever-evolving field. Cardiovascular Drugs and Therapy is a careful and accurate guide through the maze of new products and therapies which furnishes you with the details on cardiovascular pharmacology that you will refer to time and time again.