Kyoungwon Jung, Haram Bae, Jiyeun Kate Kim, Bohyun Jeong, Moo In Park, Jee Young Lee
{"title":"Comparison of three methods for generating the coccoid form of Helicobacter pylori and proteomic analysis.","authors":"Kyoungwon Jung, Haram Bae, Jiyeun Kate Kim, Bohyun Jeong, Moo In Park, Jee Young Lee","doi":"10.1186/s12866-024-03599-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Helicobacter pylori changes from spiral to coccoid depending on the host state, environmental factors, and surrounding microbial communities. The coccoid form of H. pylori still maintains its complete cellular structure, retains virulence genes, and thus plays a role in pathogenicity. To understand the coccoid form, it is crucial to establish the in vitro generation of the coccoid H. pylori. Although some conditions have been studied for the generation of the coccoid form, few studies have compared these conditions for coccoid generation. Here, we generated coccoid forms via three methods and compared the differences in morphology, viability, culturability, and protein expression.</p><p><strong>Results: </strong>The coccoid H. pylori was generated in vitro via three methods: a starvation method, a method using amoxicillin, and a method using the culture supernatant of Streptococcus mitis. The morphology and viability of the cells were examined by fluorescence microscopy after staining with SYTO9 and propidium iodide. The culturability of H. pylori was examined by counting colony-forming units on chocolate agar plates. In the starvation group, no colonies formed after 7 days, but viable coccoids were continuously observed. In the amoxicillin-treated group, the culturability decreased rapidly after 12 h, and showed a viable but non culturable (VBNC) state after the third day. Most cells treated with S. mitis supernatant changed to coccoid forms after 7 days, but colonies were continuously formed, probably due to living spiral forms. We performed proteomics to analyse the differences in protein profiles between the spiral and coccoid forms and protein profiles among the coccoid forms generated by the three methods.</p><p><strong>Conclusion: </strong>Amoxicillin treatment changed H. pylori to VBNC cells faster than starvation. Treatment with the S. mitis supernatant prolonged the culturability of H. pylori, suggesting that the S. mitis supernatant may contain substances that support spiral form maintenance. Proteomic analysis revealed that the expression of proteins differed between the spiral form and coccoid form of H. pylori, and this variation was observed among the coccoid forms produced via three different methods. The proteins in the coccoid forms produced by the three methods differed from each other, but common proteins were also observed among them.</p>","PeriodicalId":9233,"journal":{"name":"BMC Microbiology","volume":"24 1","pages":"448"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536543/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12866-024-03599-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Helicobacter pylori changes from spiral to coccoid depending on the host state, environmental factors, and surrounding microbial communities. The coccoid form of H. pylori still maintains its complete cellular structure, retains virulence genes, and thus plays a role in pathogenicity. To understand the coccoid form, it is crucial to establish the in vitro generation of the coccoid H. pylori. Although some conditions have been studied for the generation of the coccoid form, few studies have compared these conditions for coccoid generation. Here, we generated coccoid forms via three methods and compared the differences in morphology, viability, culturability, and protein expression.
Results: The coccoid H. pylori was generated in vitro via three methods: a starvation method, a method using amoxicillin, and a method using the culture supernatant of Streptococcus mitis. The morphology and viability of the cells were examined by fluorescence microscopy after staining with SYTO9 and propidium iodide. The culturability of H. pylori was examined by counting colony-forming units on chocolate agar plates. In the starvation group, no colonies formed after 7 days, but viable coccoids were continuously observed. In the amoxicillin-treated group, the culturability decreased rapidly after 12 h, and showed a viable but non culturable (VBNC) state after the third day. Most cells treated with S. mitis supernatant changed to coccoid forms after 7 days, but colonies were continuously formed, probably due to living spiral forms. We performed proteomics to analyse the differences in protein profiles between the spiral and coccoid forms and protein profiles among the coccoid forms generated by the three methods.
Conclusion: Amoxicillin treatment changed H. pylori to VBNC cells faster than starvation. Treatment with the S. mitis supernatant prolonged the culturability of H. pylori, suggesting that the S. mitis supernatant may contain substances that support spiral form maintenance. Proteomic analysis revealed that the expression of proteins differed between the spiral form and coccoid form of H. pylori, and this variation was observed among the coccoid forms produced via three different methods. The proteins in the coccoid forms produced by the three methods differed from each other, but common proteins were also observed among them.
期刊介绍:
BMC Microbiology is an open access, peer-reviewed journal that considers articles on analytical and functional studies of prokaryotic and eukaryotic microorganisms, viruses and small parasites, as well as host and therapeutic responses to them and their interaction with the environment.