Design, Synthesis, and Antitumor Potential of New Thiazole--contained 5-Fluoro-2-Oxindole Derivatives as Sunitinib Analogues.

IF 3.5 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Current medicinal chemistry Pub Date : 2024-11-04 DOI:10.2174/0109298673346427241016100726
Ivan Semenyuta, Oleksandr Los, Vitalii Sinenko, Victor Zhirnov, Lyudmyla Potikha, Oleksandr Kobzar, Volodymyr Brovarets
{"title":"Design, Synthesis, and Antitumor Potential of New Thiazole--contained 5-Fluoro-2-Oxindole Derivatives as Sunitinib Analogues.","authors":"Ivan Semenyuta, Oleksandr Los, Vitalii Sinenko, Victor Zhirnov, Lyudmyla Potikha, Oleksandr Kobzar, Volodymyr Brovarets","doi":"10.2174/0109298673346427241016100726","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Indole is considered the most promising scaffold for anticancer drug design due to its high bioavailability, unique chemical properties, and broad spectrum of pharmacological action.</p><p><strong>Objective: </strong>Twelve novel thiazole-containing the 5-fluoro-1,3-dihydro-2H-indol-2-one derivatives as sunitinib analogs were designed and synthesized, and their anticancer activity was evaluated against the NCI-60 cancer cell lines.</p><p><strong>Method: </strong>The thiazole-contained 5-fluoro-1,3-dihydro-2H-indol-2-one derivatives were synthesized using Knoevenagel condensation of 1,3-thiazole-5-carboxylic acid 1. Their anticancer activities were evaluated by NCI-60 one-dose screen assay. The molecular docking studies were performed using AutoDock tools and the AutoDock Vina programs. The ADMETlab 2.0 web server predicted the physicochemical properties of compounds.</p><p><strong>Results: </strong>Among the synthesized new 5-fluoro-2-oxindole derivatives, compound 3g demonstrated high antitumor activity (GI>70%) against eight types of cancer: leukemia, breast cancer, ovarian cancer, lung cancer, melanoma, CNS cancer, renal cancer, and colon cancer. The most activity was observed against breast cancer (T-47D, GI=96.17%), lung cancer (HOP-92, GI=95.95%), ovarian cancer (NCI/ADR-RES, GI=95.13%), and CNS cancer (SNB-75, GI=89.91%). The molecular docking results of compound 3g demonstrated the possibility of inhibiting VEGF2 receptors as his potential anticancer mechanism. The physicochemical properties predicted for compounds 3f and 3g showed positive results.</p><p><strong>Conclusion: </strong>Compound 3g demonstrated high in vitro NCI-60 anticancer activity against nine cancer types and showed cell growth inhibition against leukemia, CNS, and breast cancer at 6 - 31% higher than Sunitinib, and may represent the basis for further modification of the thiazole-containing analogs of the anticancer drug Sunitinib.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0109298673346427241016100726","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Indole is considered the most promising scaffold for anticancer drug design due to its high bioavailability, unique chemical properties, and broad spectrum of pharmacological action.

Objective: Twelve novel thiazole-containing the 5-fluoro-1,3-dihydro-2H-indol-2-one derivatives as sunitinib analogs were designed and synthesized, and their anticancer activity was evaluated against the NCI-60 cancer cell lines.

Method: The thiazole-contained 5-fluoro-1,3-dihydro-2H-indol-2-one derivatives were synthesized using Knoevenagel condensation of 1,3-thiazole-5-carboxylic acid 1. Their anticancer activities were evaluated by NCI-60 one-dose screen assay. The molecular docking studies were performed using AutoDock tools and the AutoDock Vina programs. The ADMETlab 2.0 web server predicted the physicochemical properties of compounds.

Results: Among the synthesized new 5-fluoro-2-oxindole derivatives, compound 3g demonstrated high antitumor activity (GI>70%) against eight types of cancer: leukemia, breast cancer, ovarian cancer, lung cancer, melanoma, CNS cancer, renal cancer, and colon cancer. The most activity was observed against breast cancer (T-47D, GI=96.17%), lung cancer (HOP-92, GI=95.95%), ovarian cancer (NCI/ADR-RES, GI=95.13%), and CNS cancer (SNB-75, GI=89.91%). The molecular docking results of compound 3g demonstrated the possibility of inhibiting VEGF2 receptors as his potential anticancer mechanism. The physicochemical properties predicted for compounds 3f and 3g showed positive results.

Conclusion: Compound 3g demonstrated high in vitro NCI-60 anticancer activity against nine cancer types and showed cell growth inhibition against leukemia, CNS, and breast cancer at 6 - 31% higher than Sunitinib, and may represent the basis for further modification of the thiazole-containing analogs of the anticancer drug Sunitinib.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
作为舒尼替尼类似物的新型含噻唑 5-氟-2-吲哚衍生物的设计、合成和抗肿瘤潜力。
背景:吲哚具有高生物利用度、独特的化学性质和广谱的药理作用,被认为是抗癌药物设计中最有前景的支架:目的:设计并合成了 12 种新型含噻唑的 5-氟-1,3-二氢-2H-吲哚-2-酮衍生物作为舒尼替尼类似物,并评估了它们对 NCI-60 癌细胞株的抗癌活性:方法:采用 1,3-噻唑-5-羧酸 1 的 Knoevenagel 缩合反应合成了含噻唑的 5-氟-1,3-二氢-2H-吲哚-2-酮衍生物,并通过 NCI-60 单剂量筛选试验评估了它们的抗癌活性。分子对接研究使用了 AutoDock 工具和 AutoDock Vina 程序。ADMETlab 2.0网络服务器预测了化合物的理化性质:在新合成的 5-氟-2-吲哚衍生物中,化合物 3g 对八种癌症(白血病、乳腺癌、卵巢癌、肺癌、黑色素瘤、中枢神经系统癌症、肾癌和结肠癌)具有很高的抗肿瘤活性(GI>70%)。对乳腺癌(T-47D,GI=96.17%)、肺癌(HOP-92,GI=95.95%)、卵巢癌(NCI/ADR-RES,GI=95.13%)和中枢神经系统癌(SNB-75,GI=89.91%)的活性最高。化合物 3g 的分子对接结果表明,其潜在的抗癌机制可能是抑制 VEGF2 受体。化合物 3f 和 3g 的理化性质预测结果显示良好:化合物 3g 在体外 NCI-60 中对 9 种癌症类型表现出较高的抗癌活性,对白血病、中枢神经系统和乳腺癌的细胞生长抑制率比舒尼替尼高 6 - 31%,可能是进一步改造抗癌药物舒尼替尼的含噻唑类似物的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current medicinal chemistry
Current medicinal chemistry 医学-生化与分子生物学
CiteScore
8.60
自引率
2.40%
发文量
468
审稿时长
3 months
期刊介绍: Aims & Scope Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews and guest edited thematic issues written by leaders in the field covering a range of the current topics in medicinal chemistry. The journal also publishes reviews on recent patents. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
期刊最新文献
Fibroblast Heterogeneity in Hepatocellular Carcinoma and Identification of Prognostic Markers Based on Single-cell Transcriptome Analysis. Advances in Discovery and Design of Anti-influenza Virus Peptides. C-Reactive Protein Biosensor for Diagnosing Infections Caused by Orthopedic Trauma. Stimuli-Responsive Nano/Biomaterials for Smart Drug Delivery in Cardiovascular Diseases: Promises, Challenges and Outlooks. The Risk Genes SIRP5, CMC1, and ASAH1 as Potential Targets for the Diagnosis, Immunotherapy, and Treatment of Colon Adenocarcinoma by Single-Cell and Bulk RNA Sequencing Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1