Environmental realism in molecular ecotoxicology: key considerations to transition experimental data to ecologically relevant scenarios.

IF 2.4 4区 环境科学与生态学 Q2 ECOLOGY Ecotoxicology Pub Date : 2024-11-05 DOI:10.1007/s10646-024-02827-y
Marco E Franco
{"title":"Environmental realism in molecular ecotoxicology: key considerations to transition experimental data to ecologically relevant scenarios.","authors":"Marco E Franco","doi":"10.1007/s10646-024-02827-y","DOIUrl":null,"url":null,"abstract":"<p><p>Molecular ecotoxicology facilitates the mechanistic understanding of chemical-organism interactions and the establishment of frameworks to link molecular events to adverse outcomes. However, the foundation of this sub-discipline must remain focused on the necessity to generate insight at levels of biological organization beyond the individual, namely the population, community, and ecosystem levels, and to strive towards ecological relevance. As planet Earth continues to experience unprecedented levels of chemical pollution, causing significant impact to the integrity and functionality of ecosystems, research efforts in molecular ecotoxicology must prioritize experimentation that quantitatively incorporates the influence of non-chemical stressors to enhance the predictability of chemical-driven effects at the population level and beyond. Here, perspectives on the challenge to transition experimental data to environmentally relevant scenarios are offered in an attempt to highlight the critical role of molecular ecotoxicology in protecting and supporting ecosystems threatened by chemical pollution.</p>","PeriodicalId":11497,"journal":{"name":"Ecotoxicology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10646-024-02827-y","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Molecular ecotoxicology facilitates the mechanistic understanding of chemical-organism interactions and the establishment of frameworks to link molecular events to adverse outcomes. However, the foundation of this sub-discipline must remain focused on the necessity to generate insight at levels of biological organization beyond the individual, namely the population, community, and ecosystem levels, and to strive towards ecological relevance. As planet Earth continues to experience unprecedented levels of chemical pollution, causing significant impact to the integrity and functionality of ecosystems, research efforts in molecular ecotoxicology must prioritize experimentation that quantitatively incorporates the influence of non-chemical stressors to enhance the predictability of chemical-driven effects at the population level and beyond. Here, perspectives on the challenge to transition experimental data to environmentally relevant scenarios are offered in an attempt to highlight the critical role of molecular ecotoxicology in protecting and supporting ecosystems threatened by chemical pollution.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分子生态毒理学中的环境现实主义:将实验数据转换为生态相关情景的关键考虑因素。
分子生态毒理学有助于从机理上理解化学物质与生物体之间的相互作用,并建立将分子事件与不良后果联系起来的框架。然而,这门分支学科的基础必须始终关注在个体之外的生物组织层面(即种群、群落和生态系统层面)进行深入研究的必要性,并努力实现生态相关性。随着地球不断遭受前所未有的化学污染,生态系统的完整性和功能性受到严重影响,分子生态毒理学的研究工作必须优先考虑定量纳入非化学应激源影响的实验,以提高化学驱动效应在种群层面及更高层面的可预测性。在此,我们将从不同角度探讨将实验数据转换为环境相关情景所面临的挑战,以突出分子生态毒理学在保护和支持受化学污染威胁的生态系统方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecotoxicology
Ecotoxicology 环境科学-毒理学
CiteScore
5.30
自引率
3.70%
发文量
107
审稿时长
4.7 months
期刊介绍: Ecotoxicology is an international journal devoted to the publication of fundamental research on the effects of toxic chemicals on populations, communities and terrestrial, freshwater and marine ecosystems. It aims to elucidate mechanisms and processes whereby chemicals exert their effects on ecosystems and the impact caused at the population or community level. The journal is not biased with respect to taxon or biome, and papers that indicate possible new approaches to regulation and control of toxic chemicals and those aiding in formulating ways of conserving threatened species are particularly welcome. Studies on individuals should demonstrate linkage to population effects in clear and quantitative ways. Laboratory studies must show a clear linkage to specific field situations. The journal includes not only original research papers but technical notes and review articles, both invited and submitted. A strong, broadly based editorial board ensures as wide an international coverage as possible.
期刊最新文献
Interactions between contaminants and the trophic ecology of two seabirds in a coastal lagoon of the Gulf of California. Mercury exposure in an endangered songbird: influence of marsh hydrology and evidence for early breeding impairment. Active biomonitoring of stream ecosystems: untargeted metabolomic and proteomic responses and free radical scavenging activities in mussels. Cascade reservoirs affect mercury concentrations in fish from Teles Pires river, Brazilian Amazon. Enzymatic activity and gene expression changes in the earthworms induced by co-exposure to beta-cypermethrin and triadimefon.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1