Teaching School Genetics in the 2020s: Why "Naive" Mendelian Genetics Has to Go.

IF 6.9 2区 生物学 Q1 CELL BIOLOGY Cold Spring Harbor perspectives in biology Pub Date : 2024-11-05 DOI:10.1101/cshperspect.a041679
Kostas Kampourakis
{"title":"Teaching School Genetics in the 2020s: Why \"Naive\" Mendelian Genetics Has to Go.","authors":"Kostas Kampourakis","doi":"10.1101/cshperspect.a041679","DOIUrl":null,"url":null,"abstract":"<p><p>Whereas Mendelian genetics is an important research program in the life sciences, its school version is problematic. On the one hand, it contains stereotypical representations of Gregor Mendel's work that misrepresent his findings and the historical context. This deprives students from gaining an authentic picture of how science is done. On the other hand, what most students end up learning in schools are extremely simplistic accounts of heredity, whereby alleles directly control traits and phenotypes, and thus exclusively depend on which allele an individual has. Such oversimplifications of Mendelian genetics as those that we still teach in schools were exploited by ideologues in the beginning of the twentieth century to provide the presumed \"scientific\" basis for eugenics. This paper addresses these problems of the school version of Mendelian genetics, which I call \"naive\" Mendelian genetics. It also proposes a shift in school education from teaching how the science of genetics is done using model systems to teaching the complexities of development through which heredity is materialized.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor perspectives in biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/cshperspect.a041679","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Whereas Mendelian genetics is an important research program in the life sciences, its school version is problematic. On the one hand, it contains stereotypical representations of Gregor Mendel's work that misrepresent his findings and the historical context. This deprives students from gaining an authentic picture of how science is done. On the other hand, what most students end up learning in schools are extremely simplistic accounts of heredity, whereby alleles directly control traits and phenotypes, and thus exclusively depend on which allele an individual has. Such oversimplifications of Mendelian genetics as those that we still teach in schools were exploited by ideologues in the beginning of the twentieth century to provide the presumed "scientific" basis for eugenics. This paper addresses these problems of the school version of Mendelian genetics, which I call "naive" Mendelian genetics. It also proposes a shift in school education from teaching how the science of genetics is done using model systems to teaching the complexities of development through which heredity is materialized.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2020 年代的学校遗传学教学:为什么 "天真 "的孟德尔遗传学必须退出历史舞台?
孟德尔遗传学是生命科学领域的一个重要研究项目,但其学校版本却存在问题。一方面,它包含了对格里高尔-孟德尔工作的刻板描述,歪曲了他的研究成果和历史背景。这使学生无法真实地了解科学是如何进行的。另一方面,大多数学生最终在学校学到的都是极其简单化的遗传知识,即等位基因直接控制性状和表型,因此完全取决于个体拥有哪种等位基因。二十世纪初,意识形态主义者利用我们仍在学校教授的孟德尔遗传学的过度简化,为优生学提供了假定的 "科学 "依据。本文探讨了学校版孟德尔遗传学的这些问题,我称之为 "天真 "孟德尔遗传学。本文还建议学校教育从教授如何利用模型系统进行遗传学科学研究,转向教授将遗传具体化的复杂发育过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
15.00
自引率
1.40%
发文量
56
审稿时长
3-8 weeks
期刊介绍: Cold Spring Harbor Perspectives in Biology offers a comprehensive platform in the molecular life sciences, featuring reviews that span molecular, cell, and developmental biology, genetics, neuroscience, immunology, cancer biology, and molecular pathology. This online publication provides in-depth insights into various topics, making it a valuable resource for those engaged in diverse aspects of biological research.
期刊最新文献
Mechanisms of Alternative Lengthening of Telomeres. Rediscovering and Unrediscovering Gregor Mendel: His Life, Times, and Intellectual Context. Teaching School Genetics in the 2020s: Why "Naive" Mendelian Genetics Has to Go. The Role of Microhomology-Mediated End Joining (MMEJ) at Dysfunctional Telomeres. Modeling the Emergence of Circuit Organization and Function during Development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1