{"title":"Penetration Enhancer-Free Mixed Micelles for Improving Eprinomectin Transdermal c Efficiency in Animal Parasitic Infections Therapy.","authors":"Yujuan Mao, Tianjiao Hao, Hongxiu Zhang, Xiaofei Gu, Jing Wang, Feifei Shi, Xiaolan Chen, Liuna Guo, Jie Gao, Yan Shen, JinLin Zhang, Shenglan Yu","doi":"10.2147/IJN.S476164","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Eprinomectin offers promise against parasitic infections. This study develops Eprinomectin (EPR) mixed micelles for transdermal delivery, aiming to enhance efficacy and convenience against endoparasites and ectoparasites. Physicochemical characterization and pharmacokinetic studies were conducted to assess its potential as an effective treatment for parasitic infections.</p><p><strong>Methods: </strong>Blank and EPR mixed micelles were prepared using PEG-40 Hydrogenated castor oil (RH-40) and Nonyl phenol polyoxyethylene ether 40 (NP-40). Critical micelle concentrations (CMC) determined using the pyrene fluorescence probe method. Particle size, EE, DL, in vitro release, permeation, and skin irritation were evaluated. In vivo pharmacokinetic studies were conducted in male Sprague-Dawley rats.</p><p><strong>Results: </strong>Results show that EPR mixed micelles present suitable stability, physicochemical properties, and safety. Moreover, the rapid release and high bioavailability of EPR mixed micelles have also been verified in the study. Pharmacokinetic experiments in vivo showed that an improvement in the transdermal absorption and bioavailability of EPR after encapsulation in mixed micelles formulations.</p><p><strong>Conclusion: </strong>The results proved that the novel mixed micelles are safe and effective and are expected to become a promising veterinary nano-delivery system.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"19 ","pages":"11071-11085"},"PeriodicalIF":6.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537163/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJN.S476164","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Eprinomectin offers promise against parasitic infections. This study develops Eprinomectin (EPR) mixed micelles for transdermal delivery, aiming to enhance efficacy and convenience against endoparasites and ectoparasites. Physicochemical characterization and pharmacokinetic studies were conducted to assess its potential as an effective treatment for parasitic infections.
Methods: Blank and EPR mixed micelles were prepared using PEG-40 Hydrogenated castor oil (RH-40) and Nonyl phenol polyoxyethylene ether 40 (NP-40). Critical micelle concentrations (CMC) determined using the pyrene fluorescence probe method. Particle size, EE, DL, in vitro release, permeation, and skin irritation were evaluated. In vivo pharmacokinetic studies were conducted in male Sprague-Dawley rats.
Results: Results show that EPR mixed micelles present suitable stability, physicochemical properties, and safety. Moreover, the rapid release and high bioavailability of EPR mixed micelles have also been verified in the study. Pharmacokinetic experiments in vivo showed that an improvement in the transdermal absorption and bioavailability of EPR after encapsulation in mixed micelles formulations.
Conclusion: The results proved that the novel mixed micelles are safe and effective and are expected to become a promising veterinary nano-delivery system.
期刊介绍:
The International Journal of Nanomedicine is a globally recognized journal that focuses on the applications of nanotechnology in the biomedical field. It is a peer-reviewed and open-access publication that covers diverse aspects of this rapidly evolving research area.
With its strong emphasis on the clinical potential of nanoparticles in disease diagnostics, prevention, and treatment, the journal aims to showcase cutting-edge research and development in the field.
Starting from now, the International Journal of Nanomedicine will not accept meta-analyses for publication.