Rachel R Rodenberg, Domenico Spadafora, Steffani Fitzpatrick, Grant Daly, Robert Lausch, Robert A Barrington
{"title":"γδ T17 Cells Regulate the Acute Antiviral Response of NK Cells in HSV-1-Infected Corneas.","authors":"Rachel R Rodenberg, Domenico Spadafora, Steffani Fitzpatrick, Grant Daly, Robert Lausch, Robert A Barrington","doi":"10.1167/iovs.65.13.16","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To determine whether γδ T cells regulate natural killer (NK) cells in the herpes simplex virus 1 (HSV-1)-infected cornea.</p><p><strong>Methods: </strong>CD57Bl/6 (wild-type [WT]), TCRδ-/-, and IFN-γ-/- mice were infected intracorneally with HSV-1. TCR-/- mice were treated with IL-17A at 24 hours post-infection (PI), and the WT mice received treatments of fingolimod (FTY720) and anti-IL-17A. At 48 hours PI, corneas were excised, and intracellular staining flow cytometry was performed, as well as multiplex analysis. Additionally, single-cell RNA sequencing (scRNAseq) was done to analyze the transcriptome of NK cells from WT and TCRδ-/- mice.</p><p><strong>Results: </strong>In mice lacking γδ T cells, there were significantly fewer NK cells following ocular HSV-1 infection. This reduction of NK cells corresponded with lower levels of cytokines and chemokines associated with the antiviral response. Furthermore, NK cells from WT mice had enriched IL-17A signaling compared to those from TCRδ-/- mice. The NK cell response was partially rescued in TCRδ-/- mice by administration of IL-17A. Correspondingly, the NK cell response could be blunted in WT mice by administration of anti-IL-17A. Finally, IFN-γ-/- mice had significantly less IL-17A production compared to WT mice.</p><p><strong>Conclusions: </strong>γδ T17 cells promote NK cell accumulation in HSV-1-infected corneas. In turn, NK cells secrete IFN-γ, which negatively regulates further IL-17A production by γδ T cells.</p>","PeriodicalId":14620,"journal":{"name":"Investigative ophthalmology & visual science","volume":"65 13","pages":"16"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549926/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigative ophthalmology & visual science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/iovs.65.13.16","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To determine whether γδ T cells regulate natural killer (NK) cells in the herpes simplex virus 1 (HSV-1)-infected cornea.
Methods: CD57Bl/6 (wild-type [WT]), TCRδ-/-, and IFN-γ-/- mice were infected intracorneally with HSV-1. TCR-/- mice were treated with IL-17A at 24 hours post-infection (PI), and the WT mice received treatments of fingolimod (FTY720) and anti-IL-17A. At 48 hours PI, corneas were excised, and intracellular staining flow cytometry was performed, as well as multiplex analysis. Additionally, single-cell RNA sequencing (scRNAseq) was done to analyze the transcriptome of NK cells from WT and TCRδ-/- mice.
Results: In mice lacking γδ T cells, there were significantly fewer NK cells following ocular HSV-1 infection. This reduction of NK cells corresponded with lower levels of cytokines and chemokines associated with the antiviral response. Furthermore, NK cells from WT mice had enriched IL-17A signaling compared to those from TCRδ-/- mice. The NK cell response was partially rescued in TCRδ-/- mice by administration of IL-17A. Correspondingly, the NK cell response could be blunted in WT mice by administration of anti-IL-17A. Finally, IFN-γ-/- mice had significantly less IL-17A production compared to WT mice.
Conclusions: γδ T17 cells promote NK cell accumulation in HSV-1-infected corneas. In turn, NK cells secrete IFN-γ, which negatively regulates further IL-17A production by γδ T cells.
期刊介绍:
Investigative Ophthalmology & Visual Science (IOVS), published as ready online, is a peer-reviewed academic journal of the Association for Research in Vision and Ophthalmology (ARVO). IOVS features original research, mostly pertaining to clinical and laboratory ophthalmology and vision research in general.