Bridging organ transcriptomics for advancing multiple organ toxicity assessment with a generative AI approach

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES NPJ Digital Medicine Pub Date : 2024-11-05 DOI:10.1038/s41746-024-01317-z
Ting Li, Xi Chen, Weida Tong
{"title":"Bridging organ transcriptomics for advancing multiple organ toxicity assessment with a generative AI approach","authors":"Ting Li, Xi Chen, Weida Tong","doi":"10.1038/s41746-024-01317-z","DOIUrl":null,"url":null,"abstract":"Translational research in toxicology has significantly benefited from transcriptomic profiling, particularly in drug safety. However, its application has predominantly focused on limited organs, notably the liver, due to resource constraints. This paper presents TransTox, an innovative AI model using a generative adversarial network (GAN) method to facilitate the bidirectional translation of transcriptomic profiles between the liver and kidney under drug treatment. TransTox demonstrates robust performance, validated across independent datasets and laboratories. First, the concordance between real experimental data and synthetic data generated by TransTox was demonstrated in characterizing toxicity mechanisms compared to real experimental settings. Second, TransTox proved valuable in gene expression predictive models, where synthetic data could be used to develop gene expression predictive models or serve as “digital twins” for diagnostic applications. The TransTox approach holds the potential for multi-organ toxicity assessment with AI and advancing the field of precision toxicology.","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":" ","pages":"1-14"},"PeriodicalIF":12.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538515/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41746-024-01317-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Translational research in toxicology has significantly benefited from transcriptomic profiling, particularly in drug safety. However, its application has predominantly focused on limited organs, notably the liver, due to resource constraints. This paper presents TransTox, an innovative AI model using a generative adversarial network (GAN) method to facilitate the bidirectional translation of transcriptomic profiles between the liver and kidney under drug treatment. TransTox demonstrates robust performance, validated across independent datasets and laboratories. First, the concordance between real experimental data and synthetic data generated by TransTox was demonstrated in characterizing toxicity mechanisms compared to real experimental settings. Second, TransTox proved valuable in gene expression predictive models, where synthetic data could be used to develop gene expression predictive models or serve as “digital twins” for diagnostic applications. The TransTox approach holds the potential for multi-organ toxicity assessment with AI and advancing the field of precision toxicology.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用生成式人工智能方法衔接器官转录组学,推进多器官毒性评估。
转录组分析对毒理学的转化研究大有裨益,尤其是在药物安全性方面。然而,由于资源限制,其应用主要集中在有限的器官上,尤其是肝脏。本文介绍的 TransTox 是一种创新的人工智能模型,它采用生成对抗网络 (GAN) 方法来促进药物治疗下肝脏和肾脏之间转录组图谱的双向转换。经过独立数据集和实验室的验证,TransTox 表现出强劲的性能。首先,在表征毒性机制方面,真实实验数据与 TransTox 生成的合成数据之间的一致性得到了证实。其次,TransTox 被证明在基因表达预测模型中很有价值,合成数据可用于开发基因表达预测模型或作为诊断应用的 "数字双胞胎"。TransTox 方法有望利用人工智能进行多器官毒性评估,并推动精准毒理学领域的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
期刊最新文献
A Novel method for quantifying fluctuations in wearable derived daily cardiovascular parameters across the menstrual cycle An umbrella review on how digital health intervention co-design is conducted and described Adaptive spatiotemporal encoding network for cognitive assessment using resting state EEG Human AI collaboration for unsupervised categorization of live surgical feedback Probabilistic medical predictions of large language models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1