Hiroyuki Yamaguchi, Matthew D Meyer, William B Barrell, Maryam Faisal, Rebecca Berdeaux, Karen J Liu, Yoshihiro Komatsu
{"title":"The primary cilia: Orchestrating cranial neural crest cell development.","authors":"Hiroyuki Yamaguchi, Matthew D Meyer, William B Barrell, Maryam Faisal, Rebecca Berdeaux, Karen J Liu, Yoshihiro Komatsu","doi":"10.1016/j.diff.2024.100818","DOIUrl":null,"url":null,"abstract":"<p><p>Primary cilia (hereafter \"cilia\") are microtubule-based antenna-like organelles projecting from the surface of vertebrate cells. Cilia can serve as cellular antennae controlling cell growth and differentiation. Absent or dysfunctional cilia frequently lead to craniofacial anomalies known as craniofacial ciliopathies. However, the detailed pathological mechanisms of craniofacial ciliopathies remain unclear. This perspective discusses our current understanding of the role of cilia in cranial neural crest cells. We also describe potential mechanisms of ciliogenesis in cranial neural crest cells, which may contribute to unraveling the complex pathogenesis of craniofacial ciliopathies.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.diff.2024.100818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Primary cilia (hereafter "cilia") are microtubule-based antenna-like organelles projecting from the surface of vertebrate cells. Cilia can serve as cellular antennae controlling cell growth and differentiation. Absent or dysfunctional cilia frequently lead to craniofacial anomalies known as craniofacial ciliopathies. However, the detailed pathological mechanisms of craniofacial ciliopathies remain unclear. This perspective discusses our current understanding of the role of cilia in cranial neural crest cells. We also describe potential mechanisms of ciliogenesis in cranial neural crest cells, which may contribute to unraveling the complex pathogenesis of craniofacial ciliopathies.