Zaki Milhelm, Paul Chiroi, Antonia Harangus, Marina Dudea, Cristina Ciocan, Laura Pop, Cornelia Braicu, Ioana Berindan-Neagoe
{"title":"Understanding microRNAs in the context of bacterial versus viral infections.","authors":"Zaki Milhelm, Paul Chiroi, Antonia Harangus, Marina Dudea, Cristina Ciocan, Laura Pop, Cornelia Braicu, Ioana Berindan-Neagoe","doi":"10.15386/mpr-2817","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>MicroRNAs (miRNAs), small non-coding RNAs that regulate gene expression, have emerged as biomarkers for differentiating infection types due to their distinct expression profiles in response to pathogens. This study explores miRNA profiling using microarray technology to identify miRNA signatures that differentiate viral from bacterial infections in plasma samples.</p><p><strong>Methods: </strong>Plasma samples were collected from patients diagnosed with either bacterial (e.g., pneumonia) or viral (e.g., human papillomavirus) infections; control samples were used to evaluate altered miRNA pattern, followed by Ingenuity Pathway Analysis (IPA) analysis.</p><p><strong>Results: </strong>Microarray analysis revealed distinct miRNA expression patterns for bacterial and viral infections. In bacterial infections, 11 miRNAs were significantly downregulated compared to controls. Similarly, 12 miRNAs were downregulated in viral infections. Pathway analysis indicated that the altered miRNAs in bacterial infections were linked to immune and inflammatory pathways. In contrast, viral infections were associated with miRNAs involved in cellular stress and replication processes.</p><p><strong>Conclusion: </strong>Plasma miRNA profiling offers a promising diagnostic tool to differentiate bacterial from viral infections, providing specific miRNA signatures underlying immune responses. These findings represent a foundation for developing miRNA-based diagnostics, improving the precision of infection diagnosis, and paving the way for targeted therapeutic interventions.</p>","PeriodicalId":18438,"journal":{"name":"Medicine and Pharmacy Reports","volume":"97 4","pages":"438-445"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534382/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicine and Pharmacy Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15386/mpr-2817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: MicroRNAs (miRNAs), small non-coding RNAs that regulate gene expression, have emerged as biomarkers for differentiating infection types due to their distinct expression profiles in response to pathogens. This study explores miRNA profiling using microarray technology to identify miRNA signatures that differentiate viral from bacterial infections in plasma samples.
Methods: Plasma samples were collected from patients diagnosed with either bacterial (e.g., pneumonia) or viral (e.g., human papillomavirus) infections; control samples were used to evaluate altered miRNA pattern, followed by Ingenuity Pathway Analysis (IPA) analysis.
Results: Microarray analysis revealed distinct miRNA expression patterns for bacterial and viral infections. In bacterial infections, 11 miRNAs were significantly downregulated compared to controls. Similarly, 12 miRNAs were downregulated in viral infections. Pathway analysis indicated that the altered miRNAs in bacterial infections were linked to immune and inflammatory pathways. In contrast, viral infections were associated with miRNAs involved in cellular stress and replication processes.
Conclusion: Plasma miRNA profiling offers a promising diagnostic tool to differentiate bacterial from viral infections, providing specific miRNA signatures underlying immune responses. These findings represent a foundation for developing miRNA-based diagnostics, improving the precision of infection diagnosis, and paving the way for targeted therapeutic interventions.