J Chris McKnight, Chris Pass, Dave Thompson, Steve Balfour, Sophie M J M Brasseur, Clare Embling, Gordon Hastie, Ryan Milne, Adam Kyte, Simon E W Moss, Richard Pemberton, Debbie J F Russell
{"title":"Quantifying and reducing the cost of tagging: combining computational fluid dynamics and diving experiments to reduce impact from animal-borne tags.","authors":"J Chris McKnight, Chris Pass, Dave Thompson, Steve Balfour, Sophie M J M Brasseur, Clare Embling, Gordon Hastie, Ryan Milne, Adam Kyte, Simon E W Moss, Richard Pemberton, Debbie J F Russell","doi":"10.1098/rspb.2024.1441","DOIUrl":null,"url":null,"abstract":"<p><p>Animal-borne instruments are essential research tools for ecologists and physiologists. An increasing number of studies have shown impacts of carrying a tag on behaviour and energetics, which can have implications for animal welfare and data validity. Such impacts are a result of the additional mass and/or drag loads, with the latter requiring empirical measurements or computational fluid dynamics (CFD) to estimate. To quantify and effectively minimize tag impacts from drag, a novel combined empirical and CFD approach is required. Here, we demonstrate such an approach using captive phocid seals and the widely used Sea Mammal Research Unit (SMRU) Instrumentation Group GPS/GSM tag. We (i) show a significant change in the behaviour of grey seals when carrying a tag (gen 1; associated with 16.4% additional drag); (ii) redesigned the tag (gen 2) resulting in a lower additional drag of 8.6%; (iii) show significant differences in behaviour when carrying a gen 2 compared to gen 1 tag, demonstrating that the redesign successfully reduced impact; and (iv) observed changes in the swim speed of seals that were consistent with predictions from CFD estimates of drag. The gen 2 instrument is now commercially available. This non-trivial case study should pave the way for similar studies in other taxa and species.</p>","PeriodicalId":20589,"journal":{"name":"Proceedings of the Royal Society B: Biological Sciences","volume":"291 2034","pages":"20241441"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538984/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rspb.2024.1441","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Animal-borne instruments are essential research tools for ecologists and physiologists. An increasing number of studies have shown impacts of carrying a tag on behaviour and energetics, which can have implications for animal welfare and data validity. Such impacts are a result of the additional mass and/or drag loads, with the latter requiring empirical measurements or computational fluid dynamics (CFD) to estimate. To quantify and effectively minimize tag impacts from drag, a novel combined empirical and CFD approach is required. Here, we demonstrate such an approach using captive phocid seals and the widely used Sea Mammal Research Unit (SMRU) Instrumentation Group GPS/GSM tag. We (i) show a significant change in the behaviour of grey seals when carrying a tag (gen 1; associated with 16.4% additional drag); (ii) redesigned the tag (gen 2) resulting in a lower additional drag of 8.6%; (iii) show significant differences in behaviour when carrying a gen 2 compared to gen 1 tag, demonstrating that the redesign successfully reduced impact; and (iv) observed changes in the swim speed of seals that were consistent with predictions from CFD estimates of drag. The gen 2 instrument is now commercially available. This non-trivial case study should pave the way for similar studies in other taxa and species.
期刊介绍:
Proceedings B is the Royal Society’s flagship biological research journal, accepting original articles and reviews of outstanding scientific importance and broad general interest. The main criteria for acceptance are that a study is novel, and has general significance to biologists. Articles published cover a wide range of areas within the biological sciences, many have relevance to organisms and the environments in which they live. The scope includes, but is not limited to, ecology, evolution, behavior, health and disease epidemiology, neuroscience and cognition, behavioral genetics, development, biomechanics, paleontology, comparative biology, molecular ecology and evolution, and global change biology.