Olfactory receptors in neural regeneration in the central nervous system.

IF 5.9 2区 医学 Q2 CELL BIOLOGY Neural Regeneration Research Pub Date : 2025-09-01 Epub Date: 2024-09-06 DOI:10.4103/NRR.NRR-D-24-00495
Rafael Franco, Claudia Garrigós, Toni Capó, Joan Serrano-Marín, Rafael Rivas-Santisteban, Jaume Lillo
{"title":"Olfactory receptors in neural regeneration in the central nervous system.","authors":"Rafael Franco, Claudia Garrigós, Toni Capó, Joan Serrano-Marín, Rafael Rivas-Santisteban, Jaume Lillo","doi":"10.4103/NRR.NRR-D-24-00495","DOIUrl":null,"url":null,"abstract":"<p><p>Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell, influencing behaviors from food choices to emotional memories. These receptors also contribute to our perception of flavor and have potential applications in medical diagnostics and environmental monitoring. The ability of the olfactory system to regenerate its sensory neurons provides a unique model to study neural regeneration, a phenomenon largely absent in the central nervous system. Insights gained from how olfactory neurons continuously replace themselves and reestablish functional connections can provide strategies to promote similar regenerative processes in the central nervous system, where damage often results in permanent deficits. Understanding the molecular and cellular mechanisms underpinning olfactory neuron regeneration could pave the way for developing therapeutic approaches to treat spinal cord injuries and neurodegenerative diseases like Alzheimer's disease. Olfactory receptors are found in almost any cell of every organ/tissue of the mammalian body. This ectopic expression provides insights into the chemical structures that can activate olfactory receptors. In addition to odors, olfactory receptors in ectopic expression may respond to endogenous compounds and molecules produced by mucosal colonizing microbiota. The analysis of the function of olfactory receptors in ectopic expression provides valuable information on the signaling pathway engaged upon receptor activation and the receptor's role in proliferation and cell differentiation mechanisms. This review explores the ectopic expression of olfactory receptors and the role they may play in neural regeneration within the central nervous system, with particular attention to compounds that can activate these receptors to initiate regenerative processes. Evidence suggests that olfactory receptors could serve as potential therapeutic targets for enhancing neural repair and recovery following central nervous system injuries.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":"20 9","pages":"2480-2494"},"PeriodicalIF":5.9000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Regeneration Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/NRR.NRR-D-24-00495","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell, influencing behaviors from food choices to emotional memories. These receptors also contribute to our perception of flavor and have potential applications in medical diagnostics and environmental monitoring. The ability of the olfactory system to regenerate its sensory neurons provides a unique model to study neural regeneration, a phenomenon largely absent in the central nervous system. Insights gained from how olfactory neurons continuously replace themselves and reestablish functional connections can provide strategies to promote similar regenerative processes in the central nervous system, where damage often results in permanent deficits. Understanding the molecular and cellular mechanisms underpinning olfactory neuron regeneration could pave the way for developing therapeutic approaches to treat spinal cord injuries and neurodegenerative diseases like Alzheimer's disease. Olfactory receptors are found in almost any cell of every organ/tissue of the mammalian body. This ectopic expression provides insights into the chemical structures that can activate olfactory receptors. In addition to odors, olfactory receptors in ectopic expression may respond to endogenous compounds and molecules produced by mucosal colonizing microbiota. The analysis of the function of olfactory receptors in ectopic expression provides valuable information on the signaling pathway engaged upon receptor activation and the receptor's role in proliferation and cell differentiation mechanisms. This review explores the ectopic expression of olfactory receptors and the role they may play in neural regeneration within the central nervous system, with particular attention to compounds that can activate these receptors to initiate regenerative processes. Evidence suggests that olfactory receptors could serve as potential therapeutic targets for enhancing neural repair and recovery following central nervous system injuries.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中枢神经系统神经再生中的嗅觉受体。
嗅觉受体是检测气味的关键,在我们的嗅觉中起着至关重要的作用,影响着从食物选择到情感记忆等行为。这些受体还有助于我们感知味道,并有可能应用于医疗诊断和环境监测。嗅觉系统能够再生其感觉神经元,这为研究神经再生提供了一个独特的模型,而中枢神经系统在很大程度上不存在这种现象。从嗅觉神经元如何不断自我替换和重建功能连接中获得的启示,可以为促进中枢神经系统的类似再生过程提供策略,因为中枢神经系统的损伤往往会导致永久性的功能障碍。了解嗅神经元再生的分子和细胞机制可为开发治疗脊髓损伤和阿尔茨海默病等神经退行性疾病的方法铺平道路。嗅觉受体几乎存在于哺乳动物体内每个器官/组织的任何细胞中。这种异位表达提供了对可激活嗅觉受体的化学结构的深入了解。除气味外,异位表达的嗅觉受体还可能对内源性化合物和粘膜定植微生物群产生的分子做出反应。通过分析异位表达的嗅觉受体的功能,可以了解受体激活时的信号通路以及受体在增殖和细胞分化机制中的作用。这篇综述探讨了嗅觉受体的异位表达及其在中枢神经系统神经再生中可能发挥的作用,尤其关注能激活这些受体启动再生过程的化合物。有证据表明,嗅觉受体可作为潜在的治疗靶点,加强中枢神经系统损伤后的神经修复和恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neural Regeneration Research
Neural Regeneration Research CELL BIOLOGY-NEUROSCIENCES
CiteScore
8.00
自引率
9.80%
发文量
515
审稿时长
1.0 months
期刊介绍: Neural Regeneration Research (NRR) is the Open Access journal specializing in neural regeneration and indexed by SCI-E and PubMed. The journal is committed to publishing articles on basic pathobiology of injury, repair and protection to the nervous system, while considering preclinical and clinical trials targeted at improving traumatically injuried patients and patients with neurodegenerative diseases.
期刊最新文献
Decreased levels of phosphorylated synuclein in plasma are correlated with poststroke cognitive impairment. Small molecule inhibitor DDQ-treated hippocampal neuronal cells show improved neurite outgrowth and synaptic branching. Polyethylene glycol fusion repair of severed sciatic nerves accelerates recovery of nociceptive sensory perceptions in male and female rats of different strains. Reduced mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor contributes to neurodegeneration in a model of spinal and bulbar muscular atrophy pathology. Enhanced autophagic clearance of amyloid-β via histone deacetylase 6-mediated V-ATPase assembly and lysosomal acidification protects against Alzheimer's disease in vitro and in vivo.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1