An all-atom model of the human cardiac sodium channel in a lipid bilayer.

IF 3.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Scientific Reports Pub Date : 2024-11-06 DOI:10.1038/s41598-024-78466-4
Garrett M Knotts, Spencer K Lile, Emily M Campbell, Taylor A Agee, Senal D Liyanage, Steven R Gwaltney, Christopher N Johnson
{"title":"An all-atom model of the human cardiac sodium channel in a lipid bilayer.","authors":"Garrett M Knotts, Spencer K Lile, Emily M Campbell, Taylor A Agee, Senal D Liyanage, Steven R Gwaltney, Christopher N Johnson","doi":"10.1038/s41598-024-78466-4","DOIUrl":null,"url":null,"abstract":"<p><p>Voltage-gated sodium channels (Na<sub>V</sub>) are complex macromolecular proteins that are responsible for the initial upstroke of an action potential in excitable cells. Appropriate function is necessary for many physiological processes such as heartbeat, voluntary muscle contraction, nerve conduction, and neurological function. Dysfunction can have life-threatening consequences. During the past decade, there have been significant advancements with ion channel structural characterization by CryoEM, yet descriptions of cytosolic components are often lacking. Many investigations have biophysically characterized reconstituted cytosolic components and their interactions. However, extrapolating the structural alterations and allosteric communication within an intact ion channel can be challenging. To address this, we have developed an all-atom model of the human cardiac sodium channel (Na<sub>V</sub>1.5) in a lipid bilayer with explicit salt and water. Our simulations contain descriptions of cytosolic components that are poorly predicted by AlphaFold and lacking in many CryoEM structures. Leveraging the latest advancements of the Amber force fields (ff19sb and Lipid21) and water model (OPC), our simulations improved protein backbone torsion angles and generated structural information across time (four independent one-microsecond simulations). Our analysis provided descriptions of lipid and solvent contacts and insight into the C-Terminal Domain - inactivation gate and inactivation gate - latch receptor interactions.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538489/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-78466-4","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Voltage-gated sodium channels (NaV) are complex macromolecular proteins that are responsible for the initial upstroke of an action potential in excitable cells. Appropriate function is necessary for many physiological processes such as heartbeat, voluntary muscle contraction, nerve conduction, and neurological function. Dysfunction can have life-threatening consequences. During the past decade, there have been significant advancements with ion channel structural characterization by CryoEM, yet descriptions of cytosolic components are often lacking. Many investigations have biophysically characterized reconstituted cytosolic components and their interactions. However, extrapolating the structural alterations and allosteric communication within an intact ion channel can be challenging. To address this, we have developed an all-atom model of the human cardiac sodium channel (NaV1.5) in a lipid bilayer with explicit salt and water. Our simulations contain descriptions of cytosolic components that are poorly predicted by AlphaFold and lacking in many CryoEM structures. Leveraging the latest advancements of the Amber force fields (ff19sb and Lipid21) and water model (OPC), our simulations improved protein backbone torsion angles and generated structural information across time (four independent one-microsecond simulations). Our analysis provided descriptions of lipid and solvent contacts and insight into the C-Terminal Domain - inactivation gate and inactivation gate - latch receptor interactions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脂质双分子层中人体心脏钠通道的全原子模型。
电压门控钠通道(NaV)是一种复杂的大分子蛋白质,负责可兴奋细胞中动作电位的初始上冲。适当的功能是许多生理过程(如心跳、肌肉自主收缩、神经传导和神经功能)所必需的。功能失调会造成危及生命的后果。在过去十年中,利用低温电子显微镜对离子通道结构进行表征取得了重大进展,但往往缺乏对细胞膜成分的描述。许多研究从生物物理角度描述了重构的细胞膜成分及其相互作用。然而,推断完整离子通道内的结构变化和异构通讯可能具有挑战性。为了解决这个问题,我们在含有明确盐分和水分的脂质双分子层中建立了人类心脏钠通道(NaV1.5)的全原子模型。我们的模拟包含对细胞质成分的描述,而 AlphaFold 对这些成分的预测很差,许多 CryoEM 结构中也缺乏这些成分。利用 Amber 力场(ff19sb 和 Lipid21)和水模型(OPC)的最新进展,我们的模拟改进了蛋白质骨架扭转角,并生成了跨时间的结构信息(四次独立的一微秒模拟)。我们的分析提供了对脂质和溶剂接触的描述,以及对 C 端域-失活门和失活门-闩锁受体相互作用的深入了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
期刊最新文献
Floods of Egypt's Nile in the 21st century. Hypoxic postconditioning modulates neuroprotective glial reactivity in a 3D cortical ischemic-hypoxic injury model. A study on the changes in rice composition under reduced fertilization conditions using Raman spectroscopy technology. MethylCallR : a comprehensive analysis framework for Illumina Methylation Beadchip. Acute kidney injury predicts the risk of adverse cardio renal events and all cause death in southeast Asian people with type 2 diabetes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1