Hisham Al-Ward, Wei Chen, Wenxia Gao, Chunxue Zhang, Xueyan Yang, Yao Xiong, Xinyi Wang, Rafeq Agila, Hui Xu, Yi Eve Sun
{"title":"Can miRNAs in MSCs-EVs Offer a Potential Treatment for Hypoxic-ischemic Encephalopathy?","authors":"Hisham Al-Ward, Wei Chen, Wenxia Gao, Chunxue Zhang, Xueyan Yang, Yao Xiong, Xinyi Wang, Rafeq Agila, Hui Xu, Yi Eve Sun","doi":"10.1007/s12015-024-10803-6","DOIUrl":null,"url":null,"abstract":"<p><p>Neonatal hypoxic-ischemic encephalopathy (HIE) is a critical condition resulting from impaired oxygen and blood flow to the brain during birth, leading to neuroinflammation, neuronal apoptosis, and long-term neurological deficits. Despite the use of therapeutic hypothermia, current treatments remain inadequate in fully preventing brain damage. Recent advances in mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) offer a novel, cell-free therapeutic approach, as these EVs can cross the blood-brain barrier (BBB) and deliver functional microRNAs (miRNAs) to modulate key pathways involved in inflammation and neuroprotection. This review examines how specific miRNAs encapsulated in MSC-EVs-including miR-21, miR-124, miR-146, and the miR-17-92 cluster-target the complex inflammatory responses that drive HIE pathology. By modulating pathways such as NF-κB, STAT3, and PI3K/Akt, these miRNAs influence neuroinflammatory processes, reduce neuronal apoptosis, and promote tissue repair. The aim is to assess the therapeutic potential of miRNA-loaded MSC-EVs in mitigating inflammation and neuronal damage, thus addressing the limitations of current therapies like therapeutic hypothermia.</p>","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":" ","pages":"236-253"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Reviews and Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12015-024-10803-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a critical condition resulting from impaired oxygen and blood flow to the brain during birth, leading to neuroinflammation, neuronal apoptosis, and long-term neurological deficits. Despite the use of therapeutic hypothermia, current treatments remain inadequate in fully preventing brain damage. Recent advances in mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) offer a novel, cell-free therapeutic approach, as these EVs can cross the blood-brain barrier (BBB) and deliver functional microRNAs (miRNAs) to modulate key pathways involved in inflammation and neuroprotection. This review examines how specific miRNAs encapsulated in MSC-EVs-including miR-21, miR-124, miR-146, and the miR-17-92 cluster-target the complex inflammatory responses that drive HIE pathology. By modulating pathways such as NF-κB, STAT3, and PI3K/Akt, these miRNAs influence neuroinflammatory processes, reduce neuronal apoptosis, and promote tissue repair. The aim is to assess the therapeutic potential of miRNA-loaded MSC-EVs in mitigating inflammation and neuronal damage, thus addressing the limitations of current therapies like therapeutic hypothermia.
期刊介绍:
The purpose of Stem Cell Reviews and Reports is to cover contemporary and emerging areas in stem cell research and regenerative medicine. The journal will consider for publication:
i) solicited or unsolicited reviews of topical areas of stem cell biology that highlight, critique and synthesize recent important findings in the field.
ii) full length and short reports presenting original experimental work.
iii) translational stem cell studies describing results of clinical trials using stem cells as therapeutics.
iv) papers focused on diseases of stem cells.
v) hypothesis and commentary articles as opinion-based pieces in which authors can propose a new theory, interpretation of a controversial area in stem cell biology, or a stem cell biology question or paradigm. These articles contain more speculation than reviews, but they should be based on solid rationale.
vi) protocols as peer-reviewed procedures that provide step-by-step descriptions, outlined in sufficient detail, so that both experts and novices can apply them to their own research.
vii) letters to the editor and correspondence.
In order to facilitate this exchange of scientific information and exciting novel ideas, the journal has created five thematic sections, focusing on:
i) the role of adult stem cells in tissue regeneration;
ii) progress in research on induced pluripotent stem cells, embryonic stem cells and mechanism governing embryogenesis and tissue development;
iii) the role of microenvironment and extracellular microvesicles in directing the fate of stem cells;
iv) mechanisms of stem cell trafficking, stem cell mobilization and homing with special emphasis on hematopoiesis;
v) the role of stem cells in aging processes and cancerogenesis.