{"title":"Digital spatial profiling for pathologists.","authors":"Benedetta Donati, Gloria Manzotti, Federica Torricelli, Cristian Ascione, Riccardo Valli, Giacomo Santandrea, Moira Ragazzi, Eleonora Zanetti, Alessia Ciarrocchi, Simonetta Piana","doi":"10.1007/s00428-024-03955-w","DOIUrl":null,"url":null,"abstract":"<p><p>The advent of \"omics\" technologies for high-depth tumor profiling has provided new information regarding cancer heterogeneity. However, a bulk omics profile can only partially reproduce tumor complexity, and it does not meet the preferences of pathologists used to perform an in situ assessment of marker expression, for instance, with immunohistochemistry. The NanoString GeoMx® Digital Spatial Profiler (DSP) is a platform for morphology-guided multiplex profiling of tissue slides, which allows the digital quantification of target analytes in different neoplastic settings. To illustrate the feasibility and opportunities offered by DSP from a pathologist's perspective, we applied DSP in three different representative neoplastic settings: breast carcinoma, thyroid anaplastic carcinoma, and biphasic mesothelioma. Because of the perfect overlap between the hematoxylin-eosin-stained slide and the GeoMx areas of interest, in breast carcinoma, two different antibodies allowed the distinction of the tumor cells from the surrounding tumor microenvironment. In biphasic mesothelioma, we could distinguish the epithelioid from the sarcomatoid neoplastic component, and in the thyroid, we easily separated the anaplastic areas from the well-differentiated carcinoma. DSP is a promising tool that combines traditional histological evaluation, allowing spatial assessment of a tumor and its surroundings, and innovative in situ digital profiling. Pathologists should not miss the opportunity to combine morphological and genomic analyses and be at the forefront of investigating the progression of dysplasia/neoplasia, low-grade or high-grade, epithelial/mesenchymal, and, more in general, overcoming the concept of in situ vs. bulk genomic methods.</p>","PeriodicalId":23514,"journal":{"name":"Virchows Archiv","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virchows Archiv","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00428-024-03955-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The advent of "omics" technologies for high-depth tumor profiling has provided new information regarding cancer heterogeneity. However, a bulk omics profile can only partially reproduce tumor complexity, and it does not meet the preferences of pathologists used to perform an in situ assessment of marker expression, for instance, with immunohistochemistry. The NanoString GeoMx® Digital Spatial Profiler (DSP) is a platform for morphology-guided multiplex profiling of tissue slides, which allows the digital quantification of target analytes in different neoplastic settings. To illustrate the feasibility and opportunities offered by DSP from a pathologist's perspective, we applied DSP in three different representative neoplastic settings: breast carcinoma, thyroid anaplastic carcinoma, and biphasic mesothelioma. Because of the perfect overlap between the hematoxylin-eosin-stained slide and the GeoMx areas of interest, in breast carcinoma, two different antibodies allowed the distinction of the tumor cells from the surrounding tumor microenvironment. In biphasic mesothelioma, we could distinguish the epithelioid from the sarcomatoid neoplastic component, and in the thyroid, we easily separated the anaplastic areas from the well-differentiated carcinoma. DSP is a promising tool that combines traditional histological evaluation, allowing spatial assessment of a tumor and its surroundings, and innovative in situ digital profiling. Pathologists should not miss the opportunity to combine morphological and genomic analyses and be at the forefront of investigating the progression of dysplasia/neoplasia, low-grade or high-grade, epithelial/mesenchymal, and, more in general, overcoming the concept of in situ vs. bulk genomic methods.
期刊介绍:
Manuscripts of original studies reinforcing the evidence base of modern diagnostic pathology, using immunocytochemical, molecular and ultrastructural techniques, will be welcomed. In addition, papers on critical evaluation of diagnostic criteria but also broadsheets and guidelines with a solid evidence base will be considered. Consideration will also be given to reports of work in other fields relevant to the understanding of human pathology as well as manuscripts on the application of new methods and techniques in pathology. Submission of purely experimental articles is discouraged but manuscripts on experimental work applicable to diagnostic pathology are welcomed. Biomarker studies are welcomed but need to abide by strict rules (e.g. REMARK) of adequate sample size and relevant marker choice. Single marker studies on limited patient series without validated application will as a rule not be considered. Case reports will only be considered when they provide substantial new information with an impact on understanding disease or diagnostic practice.