Effectiveness of the air-gap method for reducing radiation dose in neonate CT examinations.

IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Radiological Physics and Technology Pub Date : 2024-11-05 DOI:10.1007/s12194-024-00855-1
Takanori Masuda, Yoshinori Funama, Takeshi Nakaura, Tomoyasu Sato, Takayuki Oku, Atsushi Ono, Kazuo Awai
{"title":"Effectiveness of the air-gap method for reducing radiation dose in neonate CT examinations.","authors":"Takanori Masuda, Yoshinori Funama, Takeshi Nakaura, Tomoyasu Sato, Takayuki Oku, Atsushi Ono, Kazuo Awai","doi":"10.1007/s12194-024-00855-1","DOIUrl":null,"url":null,"abstract":"<p><p>The air-gap method is a technique employed to control dose distribution and radiation scattering in medical imaging. By introducing a layer of air between the radiation source and the object, this method effectively reduces the impact of scattered radiation. The purpose of this study was to investigate the suitability of the air-gap method for radiation dose reduction in pediatric patients during computed tomography (CT) examinations. Only one type of neonate phantom is used with 64 detector-row CT scanner while helical scanning the chest. The distance between the CT table and the subject was 0 mm at the conventional method and 150 mm at the air-gap method. The values of the real-time skin dosimeter on the dorsal surface of the body, and on the left and right mammary glands and image noise are measured and compared for each method. Compared with the conventional method, it was possible to reduce the exposure dose and image noise by approximately 10% and 15%, respectively, using the air-gap method (p < 0.05). The air-gap method was useful for reducing the radiation dose during pediatric CT examinations compared with the conventional method.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-024-00855-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

The air-gap method is a technique employed to control dose distribution and radiation scattering in medical imaging. By introducing a layer of air between the radiation source and the object, this method effectively reduces the impact of scattered radiation. The purpose of this study was to investigate the suitability of the air-gap method for radiation dose reduction in pediatric patients during computed tomography (CT) examinations. Only one type of neonate phantom is used with 64 detector-row CT scanner while helical scanning the chest. The distance between the CT table and the subject was 0 mm at the conventional method and 150 mm at the air-gap method. The values of the real-time skin dosimeter on the dorsal surface of the body, and on the left and right mammary glands and image noise are measured and compared for each method. Compared with the conventional method, it was possible to reduce the exposure dose and image noise by approximately 10% and 15%, respectively, using the air-gap method (p < 0.05). The air-gap method was useful for reducing the radiation dose during pediatric CT examinations compared with the conventional method.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
气隙法降低新生儿 CT 检查辐射剂量的有效性。
气隙法是一种用于控制医学成像中剂量分布和辐射散射的技术。通过在辐射源和物体之间引入一层空气,这种方法能有效减少散射辐射的影响。本研究的目的是调查气隙法是否适用于在计算机断层扫描(CT)检查中减少儿科患者的辐射剂量。在对胸部进行螺旋扫描时,64 个探测器排的 CT 扫描仪只使用一种类型的新生儿模型。采用传统方法时,CT 台与受检者之间的距离为 0 毫米,而采用气隙法时为 150 毫米。测量并比较了每种方法下人体背部、左右乳腺的实时皮肤剂量计值和图像噪声。与传统方法相比,使用气隙法可以将照射剂量和图像噪声分别降低约 10%和 15%(p<0.05)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Radiological Physics and Technology
Radiological Physics and Technology RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
3.00
自引率
12.50%
发文量
40
期刊介绍: The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.
期刊最新文献
Effectiveness of the air-gap method for reducing radiation dose in neonate CT examinations. Optimization of image shoot timing for cerebral veins 3D-digital subtraction angiography by interventional angiography systems. Anomaly detection scheme for lung CT images using vector quantized variational auto-encoder with support vector data description. Deep learning-based approach for acquisition time reduction in ventilation SPECT in patients after lung transplantation. Visualization of X-ray fields, overlaps, and over-beaming on surface of the head in spiral computed tomography using computer-aided design-based X-ray beam modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1