InterLabelGO+: unraveling label correlations in protein function prediction.

Quancheng Liu, Chengxin Zhang, Lydia Freddolino
{"title":"InterLabelGO+: unraveling label correlations in protein function prediction.","authors":"Quancheng Liu, Chengxin Zhang, Lydia Freddolino","doi":"10.1093/bioinformatics/btae655","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Accurate protein function prediction is crucial for understanding biological processes and advancing biomedical research. However, the rapid growth of protein sequences far outpaces the experimental characterization of their functions, necessitating the development of automated computational methods.</p><p><strong>Results: </strong>We present InterLabelGO+, a hybrid approach that integrates a deep learning-based method with an alignment-based method for improved protein function prediction. InterLabelGO+ incorporates a novel loss function that addresses label dependency and imbalance and further enhances performance through dynamic weighting of the alignment-based component. A preliminary version of InterLabelGO+ achieved a strong performance in the CAFA5 challenge, ranking sixth out of 1625 participating teams. Comprehensive evaluations on large-scale protein function prediction tasks demonstrate InterLabelGO+'s ability to accurately predict Gene Ontology terms across various functional categories and evaluation metrics.</p><p><strong>Availability and implementation: </strong>The source code and datasets for InterLabelGO+ are freely available on GitHub at https://github.com/QuanEvans/InterLabelGO. A web-server is available at https://seq2fun.dcmb.med.umich.edu/InterLabelGO/. The software is implemented in Python and PyTorch, and is supported on Linux and macOS.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568131/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Accurate protein function prediction is crucial for understanding biological processes and advancing biomedical research. However, the rapid growth of protein sequences far outpaces the experimental characterization of their functions, necessitating the development of automated computational methods.

Results: We present InterLabelGO+, a hybrid approach that integrates a deep learning-based method with an alignment-based method for improved protein function prediction. InterLabelGO+ incorporates a novel loss function that addresses label dependency and imbalance and further enhances performance through dynamic weighting of the alignment-based component. A preliminary version of InterLabelGO+ achieved a strong performance in the CAFA5 challenge, ranking sixth out of 1625 participating teams. Comprehensive evaluations on large-scale protein function prediction tasks demonstrate InterLabelGO+'s ability to accurately predict Gene Ontology terms across various functional categories and evaluation metrics.

Availability and implementation: The source code and datasets for InterLabelGO+ are freely available on GitHub at https://github.com/QuanEvans/InterLabelGO. A web-server is available at https://seq2fun.dcmb.med.umich.edu/InterLabelGO/. The software is implemented in Python and PyTorch, and is supported on Linux and macOS.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
InterLabelGO+:揭示蛋白质功能预测中的标签相关性
动机准确预测蛋白质功能对于了解生物过程和推动生物医学研究至关重要。然而,蛋白质序列的快速增长远远超过了对其功能的实验表征,因此有必要开发自动计算方法:我们提出的 InterLabelGO+ 是一种混合方法,它整合了基于深度学习的方法和基于比对的方法,用于改进蛋白质功能预测。InterLabelGO+ 采用了一种新颖的损失函数来解决标签依赖性和不平衡性问题,并通过对基于配准的部分进行动态加权来进一步提高性能。InterLabelGO+ 的初步版本在 CAFA5 挑战赛中表现出色,在 1625 个参赛团队中排名第六。对大规模蛋白质功能预测任务的综合评估表明,InterLabelGO+ 能够准确预测不同功能类别和评估指标的基因本体术语:InterLabelGO+ 的源代码和数据集可在 GitHub 上免费获取,网址为 https://github.com/QuanEvans/InterLabelGO。该软件使用 Python 和 PyTorch 实现,支持 Linux 和 macOS:补充图、表和数据可在 Bioinformatics online 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phasing Nanopore genome assembly by integrating heterozygous variations and Hi-C data. STRprofiler: efficient comparisons of short tandem repeat profiles for biomedical model authentication. Virtual Tissue Expression Analysis. Fast Polypharmacy Side Effect Prediction Using Tensor Factorisation. Lefser: Implementation of metagenomic biomarker discovery tool, LEfSe, in R.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1