An innovative electrohydrodynamics-driven SERS platform for molecular stratification and treatment monitoring of lung cancer.

Tuotuo Zhang, Biao Dong, Huiling Wang, Shuai Zhang
{"title":"An innovative electrohydrodynamics-driven SERS platform for molecular stratification and treatment monitoring of lung cancer.","authors":"Tuotuo Zhang, Biao Dong, Huiling Wang, Shuai Zhang","doi":"10.1039/d4tb01434k","DOIUrl":null,"url":null,"abstract":"<p><p>The advancement of molecular diagnostics for lung cancer stratification and monitoring is essential for the strategic planning and prompt modification of treatments, aiming to enhance clinical results. To address this need, we suggest a nanocavity structure designed to sensitively analyze the protein signature on small extracellular vesicles (sEVs). This approach facilitates precise, noninvasive staging and treatment monitoring of lung cancer. The nanocavity is created through molecular recognition, involving the interaction of sEVs with nanobox-based core-shell surface-enhanced Raman scattering (SERS) barcodes and asymmetric, mirrorlike gold microelectrodes. By applying an alternating current to the gold microelectrodes, a nanofluidic shear force was generated, promoting the binding of sEVs and the effective assembly of the nanoboxes. This interaction induced a nanocavity between the nanobox and the gold microelectrode, which significantly amplified the electromagnetic field. This amplification enhanced Raman signals from four SERS barcodes simultaneously, allowing the generation of patient-specific molecular sEV signatures. When tested on a cohort of clinical samples (<i>n</i> = 76) using the nanocavity architecture, these patient-specific sEV molecular signatures accurately identified, stratified, and monitored lung cancer patients' treatment, demonstrating its potential for clinical application.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4tb01434k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The advancement of molecular diagnostics for lung cancer stratification and monitoring is essential for the strategic planning and prompt modification of treatments, aiming to enhance clinical results. To address this need, we suggest a nanocavity structure designed to sensitively analyze the protein signature on small extracellular vesicles (sEVs). This approach facilitates precise, noninvasive staging and treatment monitoring of lung cancer. The nanocavity is created through molecular recognition, involving the interaction of sEVs with nanobox-based core-shell surface-enhanced Raman scattering (SERS) barcodes and asymmetric, mirrorlike gold microelectrodes. By applying an alternating current to the gold microelectrodes, a nanofluidic shear force was generated, promoting the binding of sEVs and the effective assembly of the nanoboxes. This interaction induced a nanocavity between the nanobox and the gold microelectrode, which significantly amplified the electromagnetic field. This amplification enhanced Raman signals from four SERS barcodes simultaneously, allowing the generation of patient-specific molecular sEV signatures. When tested on a cohort of clinical samples (n = 76) using the nanocavity architecture, these patient-specific sEV molecular signatures accurately identified, stratified, and monitored lung cancer patients' treatment, demonstrating its potential for clinical application.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于肺癌分子分层和治疗监测的创新型电流体力学驱动 SERS 平台。
用于肺癌分层和监测的分子诊断技术的进步对于制定战略计划和及时调整治疗方法至关重要,其目的是提高临床效果。为了满足这一需求,我们提出了一种纳米腔体结构,旨在灵敏地分析细胞外小泡(sEVs)上的蛋白质特征。这种方法有助于对肺癌进行精确、无创的分期和治疗监测。这种纳米腔体是通过分子识别产生的,涉及 sEV 与基于纳米盒的核壳表面增强拉曼散射(SERS)条形码和非对称镜面金微电极之间的相互作用。通过在金微电极上施加交流电,产生了纳米流体剪切力,促进了 sEVs 的结合和纳米盒的有效组装。这种相互作用在纳米盒和金微电极之间形成了一个纳米腔,从而显著放大了电磁场。这种放大作用同时增强了四个 SERS 条形码的拉曼信号,从而生成了患者特异性分子 SEV 标识。在使用纳米腔体结构对一组临床样本(n = 76)进行测试时,这些患者特异性 sEV 分子特征准确地识别、分层和监测了肺癌患者的治疗,证明了其临床应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of materials chemistry. B
Journal of materials chemistry. B 化学科学, 工程与材料, 生命科学, 分析化学, 高分子组装与超分子结构, 高分子科学, 免疫生物学, 免疫学, 生化分析及生物传感, 组织工程学, 生物力学与组织工程学, 资源循环科学, 冶金与矿业, 生物医用高分子材料, 有机高分子材料, 金属材料的制备科学与跨学科应用基础, 金属材料, 样品前处理方法与技术, 有机分子功能材料化学, 有机化学
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
1 months
期刊最新文献
Development of a xanthene-based NIR fluorescent probe for accurate and sensitive detection of γ-glutamyl transpeptidase in cancer diagnosis and treatment. Biomaterials enhancing localized cancer therapy activated anti-tumor immunity: a review. Quantum DFT analysis and molecular docking investigation of various potential breast cancer drugs. Machine learning-assisted pattern recognition and imaging of multiplexed cancer cells via a porphyrin-embedded dendrimer array. Enhanced luminescence and stability of TFMDSA nanoparticles via polymer-induced aggregation for bioimaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1