Functional Differentiation along the Rostro-Caudal Axis of the Avian Hippocampal Formation.

IF 2.1 4区 心理学 Q3 BEHAVIORAL SCIENCES Brain Behavior and Evolution Pub Date : 2024-11-01 DOI:10.1159/000542207
Karina Santiago Gonzalez, Timothy Boswell, Tom Victor Smulders
{"title":"Functional Differentiation along the Rostro-Caudal Axis of the Avian Hippocampal Formation.","authors":"Karina Santiago Gonzalez, Timothy Boswell, Tom Victor Smulders","doi":"10.1159/000542207","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Different functional domains can be identified along the longitudinal axis of the mammalian hippocampus. We have recently hypothesized that a similar functional gradient may exist along the longitudinal axis of the avian hippocampal formation (HF) as well. If the 2 gradients are homologous, we would expect the caudal HF to be more responsive to acute stress than the rostral HF.</p><p><strong>Methods: </strong>We restrained 8 adult Dekalb White hens in a bag for 30 min under red-light conditions and compared FOS-immunoreactive (FOS-ir) cell densities in different hippocampal subdivisions to control hens.</p><p><strong>Results: </strong>Although we could find no evidence of an activated stress response in the hypothalamic-pituitary-adrenal axis of the restrained birds, we did find a significant increase in FOS-ir cell densities in the rostral HF of the restrained birds compared to controls.</p><p><strong>Conclusion: </strong>We speculate that the HF response is not due to an acute stress response, but instead, it is related to the change in spatial context that was part of taking the birds and restraining them in a different room. We see no activation in the caudal HF. This would be consistent with our hypothesis that the longitudinal axis of the avian HF is homologous to the long axis of the mammalian hippocampus.</p>","PeriodicalId":56328,"journal":{"name":"Brain Behavior and Evolution","volume":" ","pages":"1-13"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Behavior and Evolution","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1159/000542207","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Different functional domains can be identified along the longitudinal axis of the mammalian hippocampus. We have recently hypothesized that a similar functional gradient may exist along the longitudinal axis of the avian hippocampal formation (HF) as well. If the 2 gradients are homologous, we would expect the caudal HF to be more responsive to acute stress than the rostral HF.

Methods: We restrained 8 adult Dekalb White hens in a bag for 30 min under red-light conditions and compared FOS-immunoreactive (FOS-ir) cell densities in different hippocampal subdivisions to control hens.

Results: Although we could find no evidence of an activated stress response in the hypothalamic-pituitary-adrenal axis of the restrained birds, we did find a significant increase in FOS-ir cell densities in the rostral HF of the restrained birds compared to controls.

Conclusion: We speculate that the HF response is not due to an acute stress response, but instead, it is related to the change in spatial context that was part of taking the birds and restraining them in a different room. We see no activation in the caudal HF. This would be consistent with our hypothesis that the longitudinal axis of the avian HF is homologous to the long axis of the mammalian hippocampus.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
沿鸟类海马形成的罗斯托-尾状轴的功能分化
引言 沿哺乳动物海马的纵轴可以发现不同的功能域。我们最近假设,沿着鸟类海马形成(HF)的纵轴也可能存在类似的功能梯度。如果这两种梯度是同源的,我们预计尾部海马体对急性应激的反应比喙部海马体更强。方法 我们在红光条件下将 8 只成年德卡白母鸡关在袋子里 30 分钟,并将不同海马亚区的 FOS 免疫反应(FOS-ir)细胞密度与对照组母鸡进行比较。结果 虽然我们没有发现任何证据表明束缚鸡的下丘脑-垂体-肾上腺(HPA)轴激活了应激反应,但我们确实发现与对照组相比,束缚鸡喙部高频的 FOS-ir 细胞密度显著增加。结论 我们推测,高频反应不是由于急性应激反应,而是与空间环境的变化有关,这种变化是将鸟类带到不同房间进行束缚的一部分。我们发现尾部高频没有激活。这与我们的假设一致,即鸟类高频的纵轴与哺乳动物海马的长轴同源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Brain Behavior and Evolution
Brain Behavior and Evolution 医学-行为科学
CiteScore
3.10
自引率
23.50%
发文量
31
审稿时长
>12 weeks
期刊介绍: ''Brain, Behavior and Evolution'' is a journal with a loyal following, high standards, and a unique profile as the main outlet for the continuing scientific discourse on nervous system evolution. The journal publishes comparative neurobiological studies that focus on nervous system structure, function, or development in vertebrates as well as invertebrates. Approaches range from the molecular over the anatomical and physiological to the behavioral. Despite this diversity, most papers published in ''Brain, Behavior and Evolution'' include an evolutionary angle, at least in the discussion, and focus on neural mechanisms or phenomena. Some purely behavioral research may be within the journal’s scope, but the suitability of such manuscripts will be assessed on a case-by-case basis. The journal also publishes review articles that provide critical overviews of current topics in evolutionary neurobiology.
期刊最新文献
Population density drives concerted increase in whole brain volume in a wrasse species Coris batuensis. Exploring the Expanded Role of Astrocytes in Primate Brain Evolution via Changes in Gene Expression. Brain activation patterns and dopaminergic neuron activity in response to conspecific advertisement calls in reproductive vs. non-reproductive male plainfin midshipman fish (Porichthys notatus). Organization of the perioral representation of the primary somatosensory cortex in prairie voles (Microtus ochrogaster). Unraveling the Neural Basis of Behavioral Isolation through the Lens of Audition in Anurans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1