Tianyou Wang , Tao Liu , Zekai Li , Di Wu , Xiaolong Zhao , Leyong Zeng
{"title":"Ultrasmall gold-encapsulated mesoporous platinum to promote photodynamic/catalytic therapy through cascade enzyme-like reactions","authors":"Tianyou Wang , Tao Liu , Zekai Li , Di Wu , Xiaolong Zhao , Leyong Zeng","doi":"10.1016/j.jcis.2024.11.008","DOIUrl":null,"url":null,"abstract":"<div><div>Mesoporous platinum (mPt) nanozyme possessed enzyme-like property of catalase (CAT) and peroxidase (POD), but the insufficient hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) concentration severely restricted its application in photodynamic therapy (PDT) and catalytic therapy. Herein, by depositing ultrasmall gold nanoparticles (AuNPs) and modifying photosensitizer IR808, a multifunctional nanozyme (mPt@Au-IR808) was designed to promote PDT/catalytic therapy through cascade enzyme-like reactions of glucose oxidase (GOx) and CAT/POD. In tumor microenvironment, the CAT-like oxygen (O<sub>2</sub>) generation improved the PDT efficacy, and the POD-like hydroxyl radical (·OH) generation achieved endogenous catalytic therapy. Using the GOx/CAT-like activities and endogenous H<sub>2</sub>O<sub>2</sub>, the yields of singlet oxygen and ·OH were significantly promoted. Furthermore, mPt@Au-IR808 showed higher photothermal conversion efficiency (41.2%) than mPt (36.1%). By combining the photothermal therapy and enhanced PDT/catalytic therapy, the developed mPt@Au-IR808 nanozyme showed excellent anti-tumor efficacy, which will be promising as cascade nanozyme to promote photo/catalytic therapy.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"680 ","pages":"Pages 117-128"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724025657","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Mesoporous platinum (mPt) nanozyme possessed enzyme-like property of catalase (CAT) and peroxidase (POD), but the insufficient hydrogen peroxide (H2O2) concentration severely restricted its application in photodynamic therapy (PDT) and catalytic therapy. Herein, by depositing ultrasmall gold nanoparticles (AuNPs) and modifying photosensitizer IR808, a multifunctional nanozyme (mPt@Au-IR808) was designed to promote PDT/catalytic therapy through cascade enzyme-like reactions of glucose oxidase (GOx) and CAT/POD. In tumor microenvironment, the CAT-like oxygen (O2) generation improved the PDT efficacy, and the POD-like hydroxyl radical (·OH) generation achieved endogenous catalytic therapy. Using the GOx/CAT-like activities and endogenous H2O2, the yields of singlet oxygen and ·OH were significantly promoted. Furthermore, mPt@Au-IR808 showed higher photothermal conversion efficiency (41.2%) than mPt (36.1%). By combining the photothermal therapy and enhanced PDT/catalytic therapy, the developed mPt@Au-IR808 nanozyme showed excellent anti-tumor efficacy, which will be promising as cascade nanozyme to promote photo/catalytic therapy.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies