Magnetic and magnetocaloric dynamics in A2BFeO6 double perovskites: Impact of A and B site variations analyzed through Monte Carlo simulation and Ab initio calculations
{"title":"Magnetic and magnetocaloric dynamics in A2BFeO6 double perovskites: Impact of A and B site variations analyzed through Monte Carlo simulation and Ab initio calculations","authors":"M. Bessimou, R. Masrour","doi":"10.1016/j.ssc.2024.115732","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the magnetic and magnetocaloric properties of the double perovskites <span><math><mrow><msub><mrow><mi>S</mi><mi>r</mi></mrow><mn>2</mn></msub><mi>F</mi><mi>e</mi><mi>O</mi><mi>s</mi><msub><mi>O</mi><mn>6</mn></msub><mo>,</mo><msub><mrow><mspace></mspace><mi>S</mi><mi>r</mi></mrow><mn>2</mn></msub><mi>F</mi><mi>e</mi><mi>C</mi><mi>o</mi><msub><mi>O</mi><mn>6</mn></msub><msub><mrow><mo>,</mo><mi>D</mi><mi>y</mi></mrow><mn>2</mn></msub><mi>F</mi><mi>e</mi><mi>O</mi><mi>s</mi><msub><mi>O</mi><mn>6</mn></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mi>D</mi><mi>y</mi></mrow><mn>2</mn></msub><mi>F</mi><mi>e</mi><mi>C</mi><mi>o</mi><msub><mi>O</mi><mn>6</mn></msub></mrow></math></span> using a combination of Monte Carlo simulations and Density Functional Theory (<em>DFT</em>). The exchange couplings were calculated using DFT. <span><math><mrow><msub><mrow><mi>S</mi><mi>r</mi></mrow><mn>2</mn></msub><mi>F</mi><mi>e</mi><mi>O</mi><mi>s</mi><msub><mi>O</mi><mn>6</mn></msub></mrow></math></span> exhibits antiferromagnetic ordering with two transitions at 50 and 150 K, driven by strong antiferromagnetic exchange interactions between Fe³⁺ and Os⁵⁺ ions. In contrast, <span><math><mrow><msub><mrow><mi>S</mi><mi>r</mi></mrow><mn>2</mn></msub><mi>F</mi><mi>e</mi><mi>C</mi><mi>o</mi><msub><mi>O</mi><mn>6</mn></msub></mrow></math></span> shows ferrimagnetic behavior with a single transition around 75 K, attributed to ferromagnetic coupling between Co<sup>2</sup>⁺ and Fe³⁺ ions. For the rare-earth-containing compounds, <span><math><mrow><msub><mrow><mi>D</mi><mi>y</mi></mrow><mn>2</mn></msub><mi>F</mi><mi>e</mi><mi>O</mi><mi>s</mi><msub><mi>O</mi><mn>6</mn></msub></mrow></math></span> demonstrates complex magnetic ordering with transitions at approximately 20 K and 140 K, influenced by the strong spin-orbit coupling of Dy³⁺ ions. Similarly, <span><math><mrow><msub><mrow><mi>D</mi><mi>y</mi></mrow><mn>2</mn></msub><mi>F</mi><mi>e</mi><mi>C</mi><mi>o</mi><msub><mi>O</mi><mn>6</mn></msub></mrow></math></span> exhibits two transitions at around 60 K and 170 K, reflecting a mix of ferromagnetic and antiferromagnetic interactions involving Dy³⁺, Co<sup>2</sup>⁺, and Fe³⁺ ions. <span><math><mrow><msub><mrow><mi>S</mi><mi>r</mi></mrow><mn>2</mn></msub><mi>F</mi><mi>e</mi><mi>O</mi><mi>s</mi><msub><mi>O</mi><mn>6</mn></msub></mrow></math></span> shows a peak magnetic entropy change <span><math><mrow><mo>Δ</mo><msub><mi>S</mi><mi>m</mi></msub></mrow></math></span> of 0.22 J/kg.K under a 5 T field at 50 K, while <span><math><mrow><msub><mrow><mi>S</mi><mi>r</mi></mrow><mn>2</mn></msub><mi>F</mi><mi>e</mi><mi>C</mi><mi>o</mi><msub><mi>O</mi><mn>6</mn></msub></mrow></math></span> exhibits a broader peak at 75 K with <span><math><mrow><mo>Δ</mo><msub><mi>S</mi><mi>m</mi></msub></mrow></math></span> of 1.5 J/kg·K. <span><math><mrow><msub><mrow><mspace></mspace><mi>D</mi><mi>y</mi></mrow><mn>2</mn></msub><mi>F</mi><mi>e</mi><mi>O</mi><mi>s</mi><msub><mi>O</mi><mrow><mn>6</mn><mspace></mspace></mrow></msub></mrow></math></span> presents significant <span><math><mrow><mo>Δ</mo><msub><mi>S</mi><mi>m</mi></msub></mrow></math></span> peaks at 20 K and 140 K, reaching 1.9 J/kg·K under a 5 T field. <span><math><mrow><msub><mrow><mi>D</mi><mi>y</mi></mrow><mn>2</mn></msub><mi>F</mi><mi>e</mi><mi>C</mi><mi>o</mi><msub><mi>O</mi><mn>6</mn></msub></mrow></math></span> displays the highest <span><math><mrow><mo>Δ</mo><msub><mi>S</mi><mi>m</mi></msub></mrow></math></span> of 4.0 J/kg·K at 60 K.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"395 ","pages":"Article 115732"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038109824003090","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the magnetic and magnetocaloric properties of the double perovskites and using a combination of Monte Carlo simulations and Density Functional Theory (DFT). The exchange couplings were calculated using DFT. exhibits antiferromagnetic ordering with two transitions at 50 and 150 K, driven by strong antiferromagnetic exchange interactions between Fe³⁺ and Os⁵⁺ ions. In contrast, shows ferrimagnetic behavior with a single transition around 75 K, attributed to ferromagnetic coupling between Co2⁺ and Fe³⁺ ions. For the rare-earth-containing compounds, demonstrates complex magnetic ordering with transitions at approximately 20 K and 140 K, influenced by the strong spin-orbit coupling of Dy³⁺ ions. Similarly, exhibits two transitions at around 60 K and 170 K, reflecting a mix of ferromagnetic and antiferromagnetic interactions involving Dy³⁺, Co2⁺, and Fe³⁺ ions. shows a peak magnetic entropy change of 0.22 J/kg.K under a 5 T field at 50 K, while exhibits a broader peak at 75 K with of 1.5 J/kg·K. presents significant peaks at 20 K and 140 K, reaching 1.9 J/kg·K under a 5 T field. displays the highest of 4.0 J/kg·K at 60 K.
期刊介绍:
Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged.
A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions.
The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.