Styrene and ethylbenzene exposure and type 2 diabetes mellitus: A longitudinal gene–environment interaction study

Linling Yu , Wei Liu , Yongfang Zhang , Qiyou Tan , Jiahao Song , Lieyang Fan , Xiaojie You , Min Zhou , Bin Wang , Weihong Chen
{"title":"Styrene and ethylbenzene exposure and type 2 diabetes mellitus: A longitudinal gene–environment interaction study","authors":"Linling Yu ,&nbsp;Wei Liu ,&nbsp;Yongfang Zhang ,&nbsp;Qiyou Tan ,&nbsp;Jiahao Song ,&nbsp;Lieyang Fan ,&nbsp;Xiaojie You ,&nbsp;Min Zhou ,&nbsp;Bin Wang ,&nbsp;Weihong Chen","doi":"10.1016/j.eehl.2024.07.001","DOIUrl":null,"url":null,"abstract":"<div><div>Styrene and ethylbenzene (S/EB) are identified as hazardous air contaminants that raise significant concerns. The association between S/EB exposure and the incidence of type 2 diabetes mellitus (T2DM), and the interaction between genes and environment, remains poorly understood. Our study consisted of 2219 Chinese adults who were part of the Wuhan-Zhuhai cohort. A follow-up assessment was conducted after six years. Exposure to S/EB was quantified by determining the concentrations of urinary biomarkers of exposure to S/EB (UBE-S/EB; urinary phenylglyoxylic acid level plus urinary mandelic acid level). Logistic regression models were constructed to investigate the relations of UBE-S/EB and genetic risk score (GRS) with T2DM prevalence and incidence. The interaction effects of UBE-S/EB and GRS on T2DM were investigated on multiplicative and additive scales. UBE-S/EB was dose-dependently and positively related to T2DM prevalence and incidence. Participants with high levels of UBE-S/EB [relative risk (RR) = 1.930, 95% confidence interval (CI): 1.157–3.309] or GRS (1.943, 1.110–3.462) demonstrated the highest risk of incident T2DM, in comparison to those with low levels of UBE-S/EB or GRS. Significant additive interaction between UBE-S/EB and GRS on T2DM incidence was discovered with relative excess risk due to interaction (95% CI) of 0.178 (0.065–0.292). The RR (95% CI) of T2DM incidence was 2.602 (1.238–6.140) for individuals with high UBE-S/EB and high GRS, compared to those with low UBE-S/EB and low GRS. This study presented the initial evidence that S/EB exposure was significantly related to increased risk of T2DM incidence, and the relationship was interactively aggravated by genetic predisposition.</div></div>","PeriodicalId":29813,"journal":{"name":"Eco-Environment & Health","volume":"3 4","pages":"Pages 452-457"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eco-Environment & Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772985024000528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Styrene and ethylbenzene (S/EB) are identified as hazardous air contaminants that raise significant concerns. The association between S/EB exposure and the incidence of type 2 diabetes mellitus (T2DM), and the interaction between genes and environment, remains poorly understood. Our study consisted of 2219 Chinese adults who were part of the Wuhan-Zhuhai cohort. A follow-up assessment was conducted after six years. Exposure to S/EB was quantified by determining the concentrations of urinary biomarkers of exposure to S/EB (UBE-S/EB; urinary phenylglyoxylic acid level plus urinary mandelic acid level). Logistic regression models were constructed to investigate the relations of UBE-S/EB and genetic risk score (GRS) with T2DM prevalence and incidence. The interaction effects of UBE-S/EB and GRS on T2DM were investigated on multiplicative and additive scales. UBE-S/EB was dose-dependently and positively related to T2DM prevalence and incidence. Participants with high levels of UBE-S/EB [relative risk (RR) = 1.930, 95% confidence interval (CI): 1.157–3.309] or GRS (1.943, 1.110–3.462) demonstrated the highest risk of incident T2DM, in comparison to those with low levels of UBE-S/EB or GRS. Significant additive interaction between UBE-S/EB and GRS on T2DM incidence was discovered with relative excess risk due to interaction (95% CI) of 0.178 (0.065–0.292). The RR (95% CI) of T2DM incidence was 2.602 (1.238–6.140) for individuals with high UBE-S/EB and high GRS, compared to those with low UBE-S/EB and low GRS. This study presented the initial evidence that S/EB exposure was significantly related to increased risk of T2DM incidence, and the relationship was interactively aggravated by genetic predisposition.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
苯乙烯和乙苯暴露与 2 型糖尿病:基因与环境相互作用的纵向研究
苯乙烯和乙基苯(S/EB)被认为是引起严重关注的有害空气污染物。人们对苯乙烯和乙苯(S/EB)暴露与 2 型糖尿病(T2DM)发病率之间的关系以及基因和环境之间的相互作用仍然知之甚少。我们的研究包括武汉-珠海队列中的 2219 名中国成年人。六年后进行了一次随访评估。通过测定尿液中暴露于 S/EB 的生物标志物(UBE-S/EB;尿液苯乙酸水平加尿液扁桃酸水平)的浓度,量化了 S/EB 暴露。为研究 UBE-S/EB 和遗传风险评分(GRS)与 T2DM 患病率和发病率的关系,建立了逻辑回归模型。研究了 UBE-S/EB 和 GRS 对 T2DM 的乘法和加法交互效应。UBE-S/EB 与 T2DM 患病率和发病率呈剂量依赖性正相关。与 UBE-S/EB 或 GRS 水平低的参与者相比,UBE-S/EB 水平高的参与者[相对风险 (RR) = 1.930,95% 置信区间 (CI):1.157-3.309]或 GRS (1.943, 1.110-3.462)发生 T2DM 的风险最高。研究发现,UBE-S/EB 和 GRS 对 T2DM 发病率有显著的相加作用,相互作用导致的相对超额风险(95% CI)为 0.178(0.065-0.292)。与低 UBE-S/EB 和低 GRS 的人群相比,高 UBE-S/EB 和高 GRS 的人群 T2DM 发病率的 RR(95% CI)为 2.602(1.238-6.140)。这项研究提供了初步证据,表明 S/EB 暴露与 T2DM 发病风险的增加有显著关系,而遗传易感性会交互加重这种关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Eco-Environment & Health
Eco-Environment & Health 环境科学与生态学-生态、环境与健康
CiteScore
11.00
自引率
0.00%
发文量
18
审稿时长
22 days
期刊介绍: Eco-Environment & Health (EEH) is an international and multidisciplinary peer-reviewed journal designed for publications on the frontiers of the ecology, environment and health as well as their related disciplines. EEH focuses on the concept of “One Health” to promote green and sustainable development, dealing with the interactions among ecology, environment and health, and the underlying mechanisms and interventions. Our mission is to be one of the most important flagship journals in the field of environmental health. Scopes EEH covers a variety of research areas, including but not limited to ecology and biodiversity conservation, environmental behaviors and bioprocesses of emerging contaminants, human exposure and health effects, and evaluation, management and regulation of environmental risks. The key topics of EEH include: 1) Ecology and Biodiversity Conservation Biodiversity Ecological restoration Ecological safety Protected area 2) Environmental and Biological Fate of Emerging Contaminants Environmental behaviors Environmental processes Environmental microbiology 3) Human Exposure and Health Effects Environmental toxicology Environmental epidemiology Environmental health risk Food safety 4) Evaluation, Management and Regulation of Environmental Risks Chemical safety Environmental policy Health policy Health economics Environmental remediation
期刊最新文献
Leveraging the One Health concept for arsenic sustainability Effects of 3D microstructure of porous media on DNAPL migration and remediation by surface active agents in groundwater Adverse outcome pathway for the neurotoxicity of Per- and polyfluoroalkyl substances: A systematic review Piezocatalytic techniques and materials for degradation of organic pollutants from aqueous solution Styrene and ethylbenzene exposure and type 2 diabetes mellitus: A longitudinal gene–environment interaction study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1