On quasi-brittle static fracture analysis of micropolar plates via XFEM model

IF 5.7 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY International Journal of Engineering Science Pub Date : 2024-11-04 DOI:10.1016/j.ijengsci.2024.104168
{"title":"On quasi-brittle static fracture analysis of micropolar plates via XFEM model","authors":"","doi":"10.1016/j.ijengsci.2024.104168","DOIUrl":null,"url":null,"abstract":"<div><div>The main objective of this study is to implement extended finite element method (XFEM) to two-dimensional (2D) micropolar structures in order to extract basic fracture parameters required in linear elastic fracture mechanics (LEFM) in a computationally efficient manner, and thus to provide basis to explore the crack propagation phenomenon within this framework. The stress and couple-stress intensity factors (SIF and CSIF) are detected with the aid of interaction integral, <em>I-integral</em>, and compared with the ones in the literature for validation purposes while an engineering problem of practical importance; plate with an oblique edge crack, is investigated to demonstrate the applicability of the developed methodology. The approach presents considerable simplification in modeling process owing to ability of XFEM to treat discontinuities and singularities appeared in the cracked domains, and offers a new, and different perspective to available methods (e.g. phase field method and peridynamics), each with their own advantages and limitations, extended to deal with crack and its growth in micropolar structures.</div></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020722524001526","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The main objective of this study is to implement extended finite element method (XFEM) to two-dimensional (2D) micropolar structures in order to extract basic fracture parameters required in linear elastic fracture mechanics (LEFM) in a computationally efficient manner, and thus to provide basis to explore the crack propagation phenomenon within this framework. The stress and couple-stress intensity factors (SIF and CSIF) are detected with the aid of interaction integral, I-integral, and compared with the ones in the literature for validation purposes while an engineering problem of practical importance; plate with an oblique edge crack, is investigated to demonstrate the applicability of the developed methodology. The approach presents considerable simplification in modeling process owing to ability of XFEM to treat discontinuities and singularities appeared in the cracked domains, and offers a new, and different perspective to available methods (e.g. phase field method and peridynamics), each with their own advantages and limitations, extended to deal with crack and its growth in micropolar structures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过 XFEM 模型对微极板进行准脆性静态断裂分析
本研究的主要目的是将扩展有限元法(XFEM)应用于二维(2D)微极结构,以便以计算效率高的方式提取线性弹性断裂力学(LEFM)所需的基本断裂参数,从而为在此框架内探索裂纹扩展现象提供基础。借助交互积分(I-integral)检测应力和耦合应力强度因子(SIF 和 CSIF),并与文献中的应力和耦合应力强度因子进行比较,以进行验证。由于 XFEM 能够处理裂纹域中出现的不连续性和奇异性,因此该方法大大简化了建模过程,并为现有方法(如相场法和周动力学)提供了一个新的不同视角,这些方法各有其优势和局限性,可扩展用于处理微极性结构中的裂纹及其生长问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Engineering Science
International Journal of Engineering Science 工程技术-工程:综合
CiteScore
11.80
自引率
16.70%
发文量
86
审稿时长
45 days
期刊介绍: The International Journal of Engineering Science is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering sciences. While it encourages a broad spectrum of contribution in the engineering sciences, its core interest lies in issues concerning material modeling and response. Articles of interdisciplinary nature are particularly welcome. The primary goal of the new editors is to maintain high quality of publications. There will be a commitment to expediting the time taken for the publication of the papers. The articles that are sent for reviews will have names of the authors deleted with a view towards enhancing the objectivity and fairness of the review process. Articles that are devoted to the purely mathematical aspects without a discussion of the physical implications of the results or the consideration of specific examples are discouraged. Articles concerning material science should not be limited merely to a description and recording of observations but should contain theoretical or quantitative discussion of the results.
期刊最新文献
A generalized differential scheme for the effective conductivity of percolating microinhomogeneous materials with the Hall effect Dilatational disk and finite cylindrical inclusion in elastic nanowire On quasi-brittle static fracture analysis of micropolar plates via XFEM model Parameter certainty quantification in nonlinear models Machine learning for crack detection in an anisotropic electrically conductive nano-engineered composite interleave with realistic geometry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1