{"title":"Advances in vehicle re-identification techniques: A survey","authors":"Xiaoying Yi, Qi Wang, Qi Liu, Yikang Rui, Bin Ran","doi":"10.1016/j.neucom.2024.128745","DOIUrl":null,"url":null,"abstract":"<div><div>The development of vehicle re-identification technology has significantly enhanced the operational efficiency of intelligent transportation systems and smart cities, attributed to the advancement of artificial intelligence technologies such as deep learning and transformer models. By accurately tracking and identifying the same vehicle under different cameras, the technology not only greatly enhances the ability of urban safety monitoring, traffic management and accident investigation, but also provides powerful technical support for the development of intelligent transportation. This paper explores the shift from traditional to deep learning approaches in vehicle re-identification, highlighting the rise of Transformer models. We assess both non-visual and vision-based re-identification technologies, with a special focus on the deep feature-based methods across supervised, unsupervised, and semi-supervised learning. And we summarize the performance of supervised and unsupervised methods on the VeRi-776 and VehicleID datasets. Finally, this paper outlines six directions for the future development of vehicle Re-ID technology, highlighting its potential applications in various areas such as smart city traffic management.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224015169","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The development of vehicle re-identification technology has significantly enhanced the operational efficiency of intelligent transportation systems and smart cities, attributed to the advancement of artificial intelligence technologies such as deep learning and transformer models. By accurately tracking and identifying the same vehicle under different cameras, the technology not only greatly enhances the ability of urban safety monitoring, traffic management and accident investigation, but also provides powerful technical support for the development of intelligent transportation. This paper explores the shift from traditional to deep learning approaches in vehicle re-identification, highlighting the rise of Transformer models. We assess both non-visual and vision-based re-identification technologies, with a special focus on the deep feature-based methods across supervised, unsupervised, and semi-supervised learning. And we summarize the performance of supervised and unsupervised methods on the VeRi-776 and VehicleID datasets. Finally, this paper outlines six directions for the future development of vehicle Re-ID technology, highlighting its potential applications in various areas such as smart city traffic management.
期刊介绍:
Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.