Marion Saby , Vincent van Hinsberg , Daniele L. Pinti , Kim Berlo , Bjarni Gautason , Ásgerður Sigurðardóttir , M. Clara Castro
{"title":"Magmatic and rock-leaching contributions to the metal load in hydrothermal fluids at þeistareykir, Iceland","authors":"Marion Saby , Vincent van Hinsberg , Daniele L. Pinti , Kim Berlo , Bjarni Gautason , Ásgerður Sigurðardóttir , M. Clara Castro","doi":"10.1016/j.apgeochem.2024.106213","DOIUrl":null,"url":null,"abstract":"<div><div>Magmatic-hydrothermal systems are key environments to study the transfer of elements from the deep Earth to the surface and the mobilization and re-distribution of elements within the crust. These systems have been recognized as potential active analogue sites for ore deposition. The source of fluids and their metal load is split between the relative contributions from degassing of underlying magma and interactions between the hydrothermal fluid and the host rock. Here, we combine analyses of noble gases and volatile metals in fluids and rocks from the þeistareykir geothermal field (NE Iceland) to provide constraints on the relative contribution of these two sources. Helium isotope data suggest 80–85% originated from magma degassing. The <sup>3</sup>He/<sup>4</sup>He ratio, corrected for atmospheric contamination (Rc/Ra) correlates with volatile metal abundances in surface fluids and indicates that Bi and Hg are predominantly derived from magma degassing. It is also shown that the deep geothermal reservoir fluid is dominated by magmatic input, except for Mn, Fe, Co, Cu, Ti and V, using the elemental signature of magmatic degassing and water-rock interaction. The spatial variations in Rc/Ra and surface fluid volatile metal contents among the wells suggest an impact of the local and regional structures on the fluid's pathway from depth to surface.</div></div>","PeriodicalId":8064,"journal":{"name":"Applied Geochemistry","volume":"176 ","pages":"Article 106213"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0883292724003184","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Magmatic-hydrothermal systems are key environments to study the transfer of elements from the deep Earth to the surface and the mobilization and re-distribution of elements within the crust. These systems have been recognized as potential active analogue sites for ore deposition. The source of fluids and their metal load is split between the relative contributions from degassing of underlying magma and interactions between the hydrothermal fluid and the host rock. Here, we combine analyses of noble gases and volatile metals in fluids and rocks from the þeistareykir geothermal field (NE Iceland) to provide constraints on the relative contribution of these two sources. Helium isotope data suggest 80–85% originated from magma degassing. The 3He/4He ratio, corrected for atmospheric contamination (Rc/Ra) correlates with volatile metal abundances in surface fluids and indicates that Bi and Hg are predominantly derived from magma degassing. It is also shown that the deep geothermal reservoir fluid is dominated by magmatic input, except for Mn, Fe, Co, Cu, Ti and V, using the elemental signature of magmatic degassing and water-rock interaction. The spatial variations in Rc/Ra and surface fluid volatile metal contents among the wells suggest an impact of the local and regional structures on the fluid's pathway from depth to surface.
期刊介绍:
Applied Geochemistry is an international journal devoted to publication of original research papers, rapid research communications and selected review papers in geochemistry and urban geochemistry which have some practical application to an aspect of human endeavour, such as the preservation of the environment, health, waste disposal and the search for resources. Papers on applications of inorganic, organic and isotope geochemistry and geochemical processes are therefore welcome provided they meet the main criterion. Spatial and temporal monitoring case studies are only of interest to our international readership if they present new ideas of broad application.
Topics covered include: (1) Environmental geochemistry (including natural and anthropogenic aspects, and protection and remediation strategies); (2) Hydrogeochemistry (surface and groundwater); (3) Medical (urban) geochemistry; (4) The search for energy resources (in particular unconventional oil and gas or emerging metal resources); (5) Energy exploitation (in particular geothermal energy and CCS); (6) Upgrading of energy and mineral resources where there is a direct geochemical application; and (7) Waste disposal, including nuclear waste disposal.