A study on complexation of Zn(II) salts with 4-aryl-2-(pyridin-2-yl)quinolines: The influence of anions on the complex structures and their luminescent properties
Nguyen Hien , Nguyen Nhat Khanh , Van Thong Pham , Tran Ngoc Dung , Hoang Tuan Duong , Nguyen Hoang Giang , Nguyen Duc Anh , Luc Van Meervelt , Le Thi Hong Hai
{"title":"A study on complexation of Zn(II) salts with 4-aryl-2-(pyridin-2-yl)quinolines: The influence of anions on the complex structures and their luminescent properties","authors":"Nguyen Hien , Nguyen Nhat Khanh , Van Thong Pham , Tran Ngoc Dung , Hoang Tuan Duong , Nguyen Hoang Giang , Nguyen Duc Anh , Luc Van Meervelt , Le Thi Hong Hai","doi":"10.1016/j.molstruc.2024.140526","DOIUrl":null,"url":null,"abstract":"<div><div>A novel ligand, 6‑methoxy-4-(4-methoxyphenyl)-2-(pyridin-2-yl)quinoline (PQ) was synthesized and studied for its interaction with ZnX<sub>2</sub>.nH<sub>2</sub>O (X: Cl<sup>-</sup>, OAc<sup>-</sup>,<span><math><msubsup><mtext>NO</mtext><mn>3</mn><mo>−</mo></msubsup></math></span>) to form three complexes of the type [Zn(X<sub>2</sub>)(PQ)(H<sub>2</sub>O)<sub>n</sub>] (<strong>Zn1</strong>-<strong>Zn3</strong>) with high yields, ranging from 75 to 94 %. The structures of <strong>Zn1</strong>–<strong>Zn3</strong> were fully characterized using ESI mass spectrometry, IR and <sup>1</sup>H NMR spectroscopy, and single-crystal X-ray diffraction (for <strong>Zn1</strong> and <strong>Zn3</strong>). Spectroscopic analyses revealed that Spectroscopic analyses revealed that the central atom Zn(II) in <strong>Zn1, Zn2</strong>, and <strong>Zn3</strong> has the coordination numbers of 4, 5, and 6, respectively. In these complexes, Zn(II) coordinates with the PQ ligand through its two nitrogen atoms, while the remaining coordination sites are occupied by anions such as Cl<sup>-</sup>, OAc, <span><math><msubsup><mtext>NO</mtext><mn>3</mn><mo>−</mo></msubsup></math></span>, or by H₂O. The results also indicate that the optical properties of the Zn(II) complexes depend not only on the primary organic ligand QP but also on the secondary inorganic ligands. In THF, the complexes <strong>Zn1</strong> and <strong>Zn3</strong>, which contain chlorido and nitrato ligands exhibit intense fluorescence blue emissions at 443 and 462 nm with quantum yields of 0.66 and 0.70, respectively. Although the complex <strong>Zn2</strong> has the weakest emission in THF, it exhibited the strongest blue emission intensity in solid state. In addition, computational studies provided insights into the structural and electronic properties, showing a strong correlation with experimental data. The calculated absorption and emission spectra were promarily based on the transition between HOMO and LUMO (π-π*) with high oscillator strength.</div></div>","PeriodicalId":16414,"journal":{"name":"Journal of Molecular Structure","volume":"1322 ","pages":"Article 140526"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Structure","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022286024030345","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A novel ligand, 6‑methoxy-4-(4-methoxyphenyl)-2-(pyridin-2-yl)quinoline (PQ) was synthesized and studied for its interaction with ZnX2.nH2O (X: Cl-, OAc-,) to form three complexes of the type [Zn(X2)(PQ)(H2O)n] (Zn1-Zn3) with high yields, ranging from 75 to 94 %. The structures of Zn1–Zn3 were fully characterized using ESI mass spectrometry, IR and 1H NMR spectroscopy, and single-crystal X-ray diffraction (for Zn1 and Zn3). Spectroscopic analyses revealed that Spectroscopic analyses revealed that the central atom Zn(II) in Zn1, Zn2, and Zn3 has the coordination numbers of 4, 5, and 6, respectively. In these complexes, Zn(II) coordinates with the PQ ligand through its two nitrogen atoms, while the remaining coordination sites are occupied by anions such as Cl-, OAc, , or by H₂O. The results also indicate that the optical properties of the Zn(II) complexes depend not only on the primary organic ligand QP but also on the secondary inorganic ligands. In THF, the complexes Zn1 and Zn3, which contain chlorido and nitrato ligands exhibit intense fluorescence blue emissions at 443 and 462 nm with quantum yields of 0.66 and 0.70, respectively. Although the complex Zn2 has the weakest emission in THF, it exhibited the strongest blue emission intensity in solid state. In addition, computational studies provided insights into the structural and electronic properties, showing a strong correlation with experimental data. The calculated absorption and emission spectra were promarily based on the transition between HOMO and LUMO (π-π*) with high oscillator strength.
期刊介绍:
The Journal of Molecular Structure is dedicated to the publication of full-length articles and review papers, providing important new structural information on all types of chemical species including:
• Stable and unstable molecules in all types of environments (vapour, molecular beam, liquid, solution, liquid crystal, solid state, matrix-isolated, surface-absorbed etc.)
• Chemical intermediates
• Molecules in excited states
• Biological molecules
• Polymers.
The methods used may include any combination of spectroscopic and non-spectroscopic techniques, for example:
• Infrared spectroscopy (mid, far, near)
• Raman spectroscopy and non-linear Raman methods (CARS, etc.)
• Electronic absorption spectroscopy
• Optical rotatory dispersion and circular dichroism
• Fluorescence and phosphorescence techniques
• Electron spectroscopies (PES, XPS), EXAFS, etc.
• Microwave spectroscopy
• Electron diffraction
• NMR and ESR spectroscopies
• Mössbauer spectroscopy
• X-ray crystallography
• Charge Density Analyses
• Computational Studies (supplementing experimental methods)
We encourage publications combining theoretical and experimental approaches. The structural insights gained by the studies should be correlated with the properties, activity and/ or reactivity of the molecule under investigation and the relevance of this molecule and its implications should be discussed.