{"title":"Toxicogenomics supports carcinogenic action of tattoo ink components","authors":"Joel Henrique Ellwanger, José Artur Bogo Chies","doi":"10.1016/j.genrep.2024.102079","DOIUrl":null,"url":null,"abstract":"<div><div>Growing evidence suggests that tattoos may be associated with an increased risk of cancer development due to carcinogenic components present in tattoo inks. We explored this issue using The Comparative Toxicogenomics Database. Exploratory toxicogenomic data corroborate the association between cancer and tattoo ink components, especially concerning the effects of polycyclic aromatic hydrocarbons (PAH). The top-15 genes affected by PAH and the top-15 diseases associated with PAH were listed. Polycyclic aromatic hydrocarbons and other components present in tattoo inks affect the expression of multiple genes that participate in the metabolism of xenobiotics, cell death, and immune responses, and disruption of these processes may facilitate carcinogenesis. In agreement, cancer is the main disease category associated with PAH. In Brazil and other countries, there are significant deficiencies in the regulation, marketing, and inspection of substances used in tattoo inks. Considering the immense number of individuals who get tattoos around the world, tattoo inks should be subjected to more complete toxicological studies, and stricter regulation of tattoo ink usage is needed.</div></div>","PeriodicalId":12673,"journal":{"name":"Gene Reports","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452014424002024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Growing evidence suggests that tattoos may be associated with an increased risk of cancer development due to carcinogenic components present in tattoo inks. We explored this issue using The Comparative Toxicogenomics Database. Exploratory toxicogenomic data corroborate the association between cancer and tattoo ink components, especially concerning the effects of polycyclic aromatic hydrocarbons (PAH). The top-15 genes affected by PAH and the top-15 diseases associated with PAH were listed. Polycyclic aromatic hydrocarbons and other components present in tattoo inks affect the expression of multiple genes that participate in the metabolism of xenobiotics, cell death, and immune responses, and disruption of these processes may facilitate carcinogenesis. In agreement, cancer is the main disease category associated with PAH. In Brazil and other countries, there are significant deficiencies in the regulation, marketing, and inspection of substances used in tattoo inks. Considering the immense number of individuals who get tattoos around the world, tattoo inks should be subjected to more complete toxicological studies, and stricter regulation of tattoo ink usage is needed.
Gene ReportsBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
3.30
自引率
7.70%
发文量
246
审稿时长
49 days
期刊介绍:
Gene Reports publishes papers that focus on the regulation, expression, function and evolution of genes in all biological contexts, including all prokaryotic and eukaryotic organisms, as well as viruses. Gene Reports strives to be a very diverse journal and topics in all fields will be considered for publication. Although not limited to the following, some general topics include: DNA Organization, Replication & Evolution -Focus on genomic DNA (chromosomal organization, comparative genomics, DNA replication, DNA repair, mobile DNA, mitochondrial DNA, chloroplast DNA). Expression & Function - Focus on functional RNAs (microRNAs, tRNAs, rRNAs, mRNA splicing, alternative polyadenylation) Regulation - Focus on processes that mediate gene-read out (epigenetics, chromatin, histone code, transcription, translation, protein degradation). Cell Signaling - Focus on mechanisms that control information flow into the nucleus to control gene expression (kinase and phosphatase pathways controlled by extra-cellular ligands, Wnt, Notch, TGFbeta/BMPs, FGFs, IGFs etc.) Profiling of gene expression and genetic variation - Focus on high throughput approaches (e.g., DeepSeq, ChIP-Seq, Affymetrix microarrays, proteomics) that define gene regulatory circuitry, molecular pathways and protein/protein networks. Genetics - Focus on development in model organisms (e.g., mouse, frog, fruit fly, worm), human genetic variation, population genetics, as well as agricultural and veterinary genetics. Molecular Pathology & Regenerative Medicine - Focus on the deregulation of molecular processes in human diseases and mechanisms supporting regeneration of tissues through pluripotent or multipotent stem cells.