{"title":"Enhanced chemical activity and gas sensing performance of silicene nanosheets by noble metal (Au, Ag) decoration: A DFT study","authors":"Bayan Azizi , Rovnag Rzayev , Esmail Vessally","doi":"10.1016/j.comptc.2024.114949","DOIUrl":null,"url":null,"abstract":"<div><div>Based on density functional theory calculations, NO<sub>2</sub> and SO<sub>2</sub> adsorptions on the Ag- and Au-functionalized silicene nanosheets were theoretically examined to explore the potential of the modified silicene nanosheets as efficient gas sensors. According to band structure analysis, both Ag- and Au-functionalized silicene nanosheets revealed metallic behavior. The results on the NO<sub>2</sub> and SO<sub>2</sub> adsorptions on Ag- and Au-functionalized silicene monolayer indicate that both substrates can strongly adsorb the gas molecules with large adsorption energies. There are large charge accumulation between the Au/Ag and Si atoms, which represents the significant connection between these atoms. The large overlaps of the PDOS spectra of the Au and O atoms represent the covalent nature of bonding between them. These insights suggest that Ag and Au can be appropriate adatoms functionalized on the silicene nanosheets for detecting NO<sub>2</sub> and SO<sub>2</sub> molecules.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1242 ","pages":"Article 114949"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Theoretical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210271X24004882","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Based on density functional theory calculations, NO2 and SO2 adsorptions on the Ag- and Au-functionalized silicene nanosheets were theoretically examined to explore the potential of the modified silicene nanosheets as efficient gas sensors. According to band structure analysis, both Ag- and Au-functionalized silicene nanosheets revealed metallic behavior. The results on the NO2 and SO2 adsorptions on Ag- and Au-functionalized silicene monolayer indicate that both substrates can strongly adsorb the gas molecules with large adsorption energies. There are large charge accumulation between the Au/Ag and Si atoms, which represents the significant connection between these atoms. The large overlaps of the PDOS spectra of the Au and O atoms represent the covalent nature of bonding between them. These insights suggest that Ag and Au can be appropriate adatoms functionalized on the silicene nanosheets for detecting NO2 and SO2 molecules.
基于密度泛函理论计算,从理论上研究了氮氧化物和二氧化硫在琼脂和金功能化硅纳米片上的吸附情况,以探索改性硅纳米片作为高效气体传感器的潜力。根据能带结构分析,Ag 和 Au 功能化硅纳米片都显示出金属特性。二氧化氮和二氧化硫在 Ag- 和 Au-功能化硅单层上的吸附结果表明,这两种基底都能以较大的吸附能强烈吸附气体分子。金/银原子和硅原子之间存在大量电荷积累,这表明这些原子之间存在重要联系。Au 原子和 O 原子的 PDOS 光谱的大量重叠代表了它们之间的共价键性质。这些发现表明,硅纳米片上的 Ag 和 Au 原子是检测二氧化氮和二氧化硫分子的合适功能原子。
期刊介绍:
Computational and Theoretical Chemistry publishes high quality, original reports of significance in computational and theoretical chemistry including those that deal with problems of structure, properties, energetics, weak interactions, reaction mechanisms, catalysis, and reaction rates involving atoms, molecules, clusters, surfaces, and bulk matter.