{"title":"Derivative-Free Optimization for Low-Rank Adaptation in Large Language Models","authors":"Feihu Jin;Yifan Liu;Ying Tan","doi":"10.1109/TASLP.2024.3477330","DOIUrl":null,"url":null,"abstract":"Parameter-efficient tuning methods such as LoRA could achieve comparable performance to model tuning by tuning a small portion of the parameters. However, substantial computational resources are still required, as this process involves calculating gradients and performing back-propagation throughout the model. Much effort has recently been devoted to utilizing the derivative-free optimization methods to eschew the computation of gradients and showcase an augmented level of robustness in few-shot settings. In this paper, we prepend the low-rank modules into each self-attention layer of the model and employ two derivative-free optimization methods to optimize these low-rank modules at each layer alternately. Extensive results on various tasks and language models demonstrate that our proposed method achieves substantial improvement and exhibits clear advantages in memory usage and convergence speed compared to existing gradient-based parameter-efficient tuning and derivative-free optimization methods in few-shot settings.","PeriodicalId":13332,"journal":{"name":"IEEE/ACM Transactions on Audio, Speech, and Language Processing","volume":"32 ","pages":"4607-4616"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Audio, Speech, and Language Processing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10711229/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Parameter-efficient tuning methods such as LoRA could achieve comparable performance to model tuning by tuning a small portion of the parameters. However, substantial computational resources are still required, as this process involves calculating gradients and performing back-propagation throughout the model. Much effort has recently been devoted to utilizing the derivative-free optimization methods to eschew the computation of gradients and showcase an augmented level of robustness in few-shot settings. In this paper, we prepend the low-rank modules into each self-attention layer of the model and employ two derivative-free optimization methods to optimize these low-rank modules at each layer alternately. Extensive results on various tasks and language models demonstrate that our proposed method achieves substantial improvement and exhibits clear advantages in memory usage and convergence speed compared to existing gradient-based parameter-efficient tuning and derivative-free optimization methods in few-shot settings.
期刊介绍:
The IEEE/ACM Transactions on Audio, Speech, and Language Processing covers audio, speech and language processing and the sciences that support them. In audio processing: transducers, room acoustics, active sound control, human audition, analysis/synthesis/coding of music, and consumer audio. In speech processing: areas such as speech analysis, synthesis, coding, speech and speaker recognition, speech production and perception, and speech enhancement. In language processing: speech and text analysis, understanding, generation, dialog management, translation, summarization, question answering and document indexing and retrieval, as well as general language modeling.