Exploring mass transfer as a parameter in mechanochemical processes†

Obida Bawadkji and Rainer Haag
{"title":"Exploring mass transfer as a parameter in mechanochemical processes†","authors":"Obida Bawadkji and Rainer Haag","doi":"10.1039/D4MR00041B","DOIUrl":null,"url":null,"abstract":"<p >Mechanochemistry is increasingly recognized for its sustainability, environmental benefits, and efficiency in synthesizing a wide array of chemicals and materials. This research focuses on advancing our understanding of the factors that influence mechanochemical processes, which remains limited despite the broad application of these techniques in industry and research. Specifically, this paper explores the impact of mass transfer—a parameter previously underexplored in the context of mechanochemistry—on the outcome of chemical syntheses performed without solvents, thus avoiding the use of environmentally harmful substances and complex purification steps. This study introduces a novel multi-functional ball-mill medium design that enhances mass transfer, promotes more uniform kinetic energy distribution and material treatment, and increases overall synthesis efficiency. By analyzing the products of allotrope conversion, co-crystallization, and size reduction, we demonstrate how our new design enhances mechanochemical reactions. The findings indicate that adjusting the geometry of the milling media can significantly influence the chemical transformation processes. This advancement not only contributes to a deeper comprehension of mechanochemical synthesis but also opens avenues for more controlled and scalable production methods. The research underscores the importance of considering mass transfer in developing more effective mechanochemical technologies, paving the way for future innovations in this green chemistry field.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/mr/d4mr00041b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Mechanochemistry","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/mr/d4mr00041b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mechanochemistry is increasingly recognized for its sustainability, environmental benefits, and efficiency in synthesizing a wide array of chemicals and materials. This research focuses on advancing our understanding of the factors that influence mechanochemical processes, which remains limited despite the broad application of these techniques in industry and research. Specifically, this paper explores the impact of mass transfer—a parameter previously underexplored in the context of mechanochemistry—on the outcome of chemical syntheses performed without solvents, thus avoiding the use of environmentally harmful substances and complex purification steps. This study introduces a novel multi-functional ball-mill medium design that enhances mass transfer, promotes more uniform kinetic energy distribution and material treatment, and increases overall synthesis efficiency. By analyzing the products of allotrope conversion, co-crystallization, and size reduction, we demonstrate how our new design enhances mechanochemical reactions. The findings indicate that adjusting the geometry of the milling media can significantly influence the chemical transformation processes. This advancement not only contributes to a deeper comprehension of mechanochemical synthesis but also opens avenues for more controlled and scalable production methods. The research underscores the importance of considering mass transfer in developing more effective mechanochemical technologies, paving the way for future innovations in this green chemistry field.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索作为机械化学过程参数的传质†。
机械化学因其可持续发展性、环境效益以及合成各种化学品和材料的效率而日益得到认可。尽管这些技术在工业和研究领域得到了广泛应用,但我们对影响机械化学过程的因素的了解仍然有限。具体而言,本文探讨了传质--以前在机械化学方面未充分探索的参数--对无溶剂化学合成结果的影响,从而避免使用对环境有害的物质和复杂的纯化步骤。本研究介绍了一种新型多功能球磨介质设计,它能增强传质,促进更均匀的动能分布和材料处理,并提高整体合成效率。通过分析同素异形体转化、共晶体化和尺寸减小的产物,我们展示了新设计如何增强机械化学反应。研究结果表明,调整研磨介质的几何形状可以显著影响化学转化过程。这一进展不仅有助于加深对机械化学合成的理解,还为更可控和可扩展的生产方法开辟了途径。这项研究强调了在开发更有效的机械化学技术时考虑传质的重要性,为这一绿色化学领域的未来创新铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Back cover Vortex mediated fabrication of 2D antimonene sheets from antimony powder† Mechanical approach for creating different molecular adducts and regulating salt polymorphs: a case study of the anti-inflammatory medication ensifentrine† Exploring mass transfer as a parameter in mechanochemical processes† Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1