Akram Khelaifia, Ali Zine, Salah Guettala, Rachid Chebili
{"title":"Assessment of the position and quantity of shear walls their correlation with building height on the seismic nonlinear performance","authors":"Akram Khelaifia, Ali Zine, Salah Guettala, Rachid Chebili","doi":"10.1007/s42107-024-01154-1","DOIUrl":null,"url":null,"abstract":"<div><p>This study addresses a crucial research gap by investigating the optimal position of shear walls, the ideal shear wall-floor area ratio in building design, and their correlation with building height using non-linear analysis (Static and Dynamic). The results, including capacity curves, inter-story drift, and performance levels from both nonlinear static analysis and nonlinear dynamic analysis, are explored. Adopting principles of performance-based seismic design, the study reflects a comprehensive approach to seismic analysis and mitigation. The findings underscore that elevating the shear wall ratio not only enhances structural rigidity but also improves reliability in terms of inter-story drift, playing a crucial role in achieving the desired performance level during the design process. For a 7-story structure, a 1.00% shear wall–floor ratio is crucial, while a 1.5% ratio is essential for a 14-story structure to meet design conditions. The study highlights the intricate interplay among shear wall–floor ratios, optimal shear wall positions, and their correlation with building height as pivotal factors or main criteria influencing performance and structural integrity. Additionally, the presence of shear walls adopting compound forms (Box, U, and L) enhances reliability, while incomplete shear walls within the frame degrade half-filled frame stiffness, impacting short beam integrity. Furthermore, the study confirms the reliability of both nonlinear dynamic analysis and nonlinear static analysis, providing valuable insights into optimizing building designs for enhanced structural performance.</p></div>","PeriodicalId":8513,"journal":{"name":"Asian Journal of Civil Engineering","volume":"25 8","pages":"5925 - 5937"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42107-024-01154-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
This study addresses a crucial research gap by investigating the optimal position of shear walls, the ideal shear wall-floor area ratio in building design, and their correlation with building height using non-linear analysis (Static and Dynamic). The results, including capacity curves, inter-story drift, and performance levels from both nonlinear static analysis and nonlinear dynamic analysis, are explored. Adopting principles of performance-based seismic design, the study reflects a comprehensive approach to seismic analysis and mitigation. The findings underscore that elevating the shear wall ratio not only enhances structural rigidity but also improves reliability in terms of inter-story drift, playing a crucial role in achieving the desired performance level during the design process. For a 7-story structure, a 1.00% shear wall–floor ratio is crucial, while a 1.5% ratio is essential for a 14-story structure to meet design conditions. The study highlights the intricate interplay among shear wall–floor ratios, optimal shear wall positions, and their correlation with building height as pivotal factors or main criteria influencing performance and structural integrity. Additionally, the presence of shear walls adopting compound forms (Box, U, and L) enhances reliability, while incomplete shear walls within the frame degrade half-filled frame stiffness, impacting short beam integrity. Furthermore, the study confirms the reliability of both nonlinear dynamic analysis and nonlinear static analysis, providing valuable insights into optimizing building designs for enhanced structural performance.
期刊介绍:
The Asian Journal of Civil Engineering (Building and Housing) welcomes articles and research contributions on topics such as:- Structural analysis and design - Earthquake and structural engineering - New building materials and concrete technology - Sustainable building and energy conservation - Housing and planning - Construction management - Optimal design of structuresPlease note that the journal will not accept papers in the area of hydraulic or geotechnical engineering, traffic/transportation or road making engineering, and on materials relevant to non-structural buildings, e.g. materials for road making and asphalt. Although the journal will publish authoritative papers on theoretical and experimental research works and advanced applications, it may also feature, when appropriate: a) tutorial survey type papers reviewing some fields of civil engineering; b) short communications and research notes; c) book reviews and conference announcements.