Effect of human-induced dynamic loading and its mitigation on pedestrian steel truss bridges

Yati R. Tank, G. R. Vesmawala
{"title":"Effect of human-induced dynamic loading and its mitigation on pedestrian steel truss bridges","authors":"Yati R. Tank,&nbsp;G. R. Vesmawala","doi":"10.1007/s42107-024-01165-y","DOIUrl":null,"url":null,"abstract":"<div><p>Vibration challenges in lightweight pedestrian structures, such as footbridges, have been extensively studied, particularly following the notable lateral vibrations observed during the opening of the London Millennium Bridge on June 10, 2000. This incident underscores the critical need for a deeper understanding of the dynamic behavior of pedestrian bridges subjected to human-induced loads. This study focuses on the dynamic responses of pedestrian steel truss bridges under various loading conditions, including walking, jogging, and crowd-induced vibrations. Finite element analysis is used to identify critical parameters such as the fundamental frequency, acceleration, and damping and evaluate these parameters against the comfort criteria specified in BS EN 1991-2: 2003. Initial findings revealed that acceleration values exceeded the acceptable limits, prompting structural modifications to enhance mass, stiffness, and damping properties. Additionally, incorporating tuned mass dampers as a mitigation strategy demonstrated significant efficacy, achieving up to a 90% reduction in deck acceleration. The results provide valuable insights into optimising pedestrian bridge designs to improve both structural performance and user comfort, contributing to safer and more resilient infrastructures.</p></div>","PeriodicalId":8513,"journal":{"name":"Asian Journal of Civil Engineering","volume":"25 8","pages":"6105 - 6117"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42107-024-01165-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Vibration challenges in lightweight pedestrian structures, such as footbridges, have been extensively studied, particularly following the notable lateral vibrations observed during the opening of the London Millennium Bridge on June 10, 2000. This incident underscores the critical need for a deeper understanding of the dynamic behavior of pedestrian bridges subjected to human-induced loads. This study focuses on the dynamic responses of pedestrian steel truss bridges under various loading conditions, including walking, jogging, and crowd-induced vibrations. Finite element analysis is used to identify critical parameters such as the fundamental frequency, acceleration, and damping and evaluate these parameters against the comfort criteria specified in BS EN 1991-2: 2003. Initial findings revealed that acceleration values exceeded the acceptable limits, prompting structural modifications to enhance mass, stiffness, and damping properties. Additionally, incorporating tuned mass dampers as a mitigation strategy demonstrated significant efficacy, achieving up to a 90% reduction in deck acceleration. The results provide valuable insights into optimising pedestrian bridge designs to improve both structural performance and user comfort, contributing to safer and more resilient infrastructures.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人为动荷载对人行钢桁架桥的影响及其减缓措施
人们对轻质人行结构(如人行天桥)的振动问题进行了广泛的研究,尤其是在 2000 年 6 月 10 日伦敦千禧桥通车时观察到明显的横向振动之后。这一事件凸显了深入了解人行天桥在人为荷载作用下的动态行为的迫切需要。本研究的重点是人行钢桁架桥在各种荷载条件下的动态响应,包括步行、慢跑和人群引起的振动。有限元分析用于确定基频、加速度和阻尼等关键参数,并根据 BS EN 1991-2: 2003 中规定的舒适度标准对这些参数进行评估。初步研究结果表明,加速度值超出了可接受的范围,这促使对结构进行修改,以增强质量、刚度和阻尼特性。此外,采用调谐质量阻尼器作为缓解策略的效果显著,最多可将甲板加速度降低 90%。研究结果为优化人行天桥设计,提高结构性能和用户舒适度提供了有价值的见解,有助于建设更安全、更具弹性的基础设施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Asian Journal of Civil Engineering
Asian Journal of Civil Engineering Engineering-Civil and Structural Engineering
CiteScore
2.70
自引率
0.00%
发文量
121
期刊介绍: The Asian Journal of Civil Engineering (Building and Housing) welcomes articles and research contributions on topics such as:- Structural analysis and design - Earthquake and structural engineering - New building materials and concrete technology - Sustainable building and energy conservation - Housing and planning - Construction management - Optimal design of structuresPlease note that the journal will not accept papers in the area of hydraulic or geotechnical engineering, traffic/transportation or road making engineering, and on materials relevant to non-structural buildings, e.g. materials for road making and asphalt.  Although the journal will publish authoritative papers on theoretical and experimental research works and advanced applications, it may also feature, when appropriate:  a) tutorial survey type papers reviewing some fields of civil engineering; b) short communications and research notes; c) book reviews and conference announcements.
期刊最新文献
Machine learning approaches to soil-structure interaction under seismic loading: predictive modeling and analysis Studies on soil stabilized hollow blocks using c & d waste Optimizing ventilation system retrofitting: balancing time, cost, and indoor air quality with NSGA-III Sustainability assessment of sheet pile materials: concrete vs steel in retaining wall construction Predictive modeling for concrete properties under variable curing conditions using advanced machine learning approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1