{"title":"Integrating biochar production in biorefineries: towards a sustainable future and circular economy","authors":"Dixita Chettri, Deepjyoti Boro, Manisha Chirania, Anil Kumar Verma","doi":"10.1002/bbb.2679","DOIUrl":null,"url":null,"abstract":"<p>Biochar, a carbon-rich material derived from organic biomass under low-O<sub>2</sub> conditions, has gained importance due to its role in mitigating climate change by sequestering carbon. It can be used as an alternative energy source and has applications in nutrient cycling, improving soil properties, and removing heavy metals and organic pollutants, thus contributing to sustainable agriculture and environmental remediation. In the face of alarming climate change, rising energy demand, and increasing pollution, the integration of biochar production into biorefineries is an important strategy to promote a sustainable and circular economy. Adopting a holistic approach to biomass utilization by developing strategies to maximize biochar production along with the production of other value-added products while improving its quality can increase biorefineries' overall sustainability and efficiency. Fine-tuning the biorefinery process from feedstock selection to co-production, optimizing pyrolysis conditions, and integrating it with other technologies can help to achieve this goal while generating zero waste and diversified revenues. With the biochar market growing exponentially, further research into the long-term impact of biochar on carbon sequestration and its application in the environment is the next step.</p>","PeriodicalId":55380,"journal":{"name":"Biofuels Bioproducts & Biorefining-Biofpr","volume":"18 6","pages":"2156-2176"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofuels Bioproducts & Biorefining-Biofpr","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bbb.2679","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Biochar, a carbon-rich material derived from organic biomass under low-O2 conditions, has gained importance due to its role in mitigating climate change by sequestering carbon. It can be used as an alternative energy source and has applications in nutrient cycling, improving soil properties, and removing heavy metals and organic pollutants, thus contributing to sustainable agriculture and environmental remediation. In the face of alarming climate change, rising energy demand, and increasing pollution, the integration of biochar production into biorefineries is an important strategy to promote a sustainable and circular economy. Adopting a holistic approach to biomass utilization by developing strategies to maximize biochar production along with the production of other value-added products while improving its quality can increase biorefineries' overall sustainability and efficiency. Fine-tuning the biorefinery process from feedstock selection to co-production, optimizing pyrolysis conditions, and integrating it with other technologies can help to achieve this goal while generating zero waste and diversified revenues. With the biochar market growing exponentially, further research into the long-term impact of biochar on carbon sequestration and its application in the environment is the next step.
期刊介绍:
Biofuels, Bioproducts and Biorefining is a vital source of information on sustainable products, fuels and energy. Examining the spectrum of international scientific research and industrial development along the entire supply chain, The journal publishes a balanced mixture of peer-reviewed critical reviews, commentary, business news highlights, policy updates and patent intelligence. Biofuels, Bioproducts and Biorefining is dedicated to fostering growth in the biorenewables sector and serving its growing interdisciplinary community by providing a unique, systems-based insight into technologies in these fields as well as their industrial development.