Utilizing multilayer perceptron for machine learning diagnosis in phase change material-based thermal management systems

IF 2.8 Q2 THERMODYNAMICS Heat Transfer Pub Date : 2024-08-27 DOI:10.1002/htj.23163
Abdul Arif, Vallapureddy Siva Nagi Reddy, Kode Srividya, Ujwal Teja Mallampalli
{"title":"Utilizing multilayer perceptron for machine learning diagnosis in phase change material-based thermal management systems","authors":"Abdul Arif,&nbsp;Vallapureddy Siva Nagi Reddy,&nbsp;Kode Srividya,&nbsp;Ujwal Teja Mallampalli","doi":"10.1002/htj.23163","DOIUrl":null,"url":null,"abstract":"<p>Electric vehicles encounter significant challenges in colder climates due to reduced battery efficiency at low temperatures and increased electricity demand for cabin heating, which impacts vehicle propulsion. This study aims to address these challenges by implementing a thermal management system utilizing Phase Change Materials (PCMs) and validating the performance of a Multilayer Perceptron (MLP) model in predicting PCMs behavior and battery temperature distributions. The study employs an MLP model trained with 160 samples of diverse heat inputs, including pulsating, constant, wiener, discharging, and random temperatures. The model uses these temperatures as inputs and liquid fractions as target values. Performance evaluation is conducted using the MATLAB platform and is benchmarked against existing approaches, such as Long Short-term Memory (LSTM), spatiotemporal convolutional neural network (CNN), and pooled CNN-LSTM. The MLP model's accuracy in predicting PCMs phase transitions is validated by comparing predicted liquid fractions with numerically obtained values. Additionally, this study forecasts temperature distributions within a standard battery pack under various discharge scenarios, considering the performance of commercial lithium-ion batteries. The proposed MLP model demonstrates high efficacy, achieving a correlation of up to 0.999 and root mean squared error below 0.013 compared with numerical results.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"53 8","pages":"4922-4947"},"PeriodicalIF":2.8000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Electric vehicles encounter significant challenges in colder climates due to reduced battery efficiency at low temperatures and increased electricity demand for cabin heating, which impacts vehicle propulsion. This study aims to address these challenges by implementing a thermal management system utilizing Phase Change Materials (PCMs) and validating the performance of a Multilayer Perceptron (MLP) model in predicting PCMs behavior and battery temperature distributions. The study employs an MLP model trained with 160 samples of diverse heat inputs, including pulsating, constant, wiener, discharging, and random temperatures. The model uses these temperatures as inputs and liquid fractions as target values. Performance evaluation is conducted using the MATLAB platform and is benchmarked against existing approaches, such as Long Short-term Memory (LSTM), spatiotemporal convolutional neural network (CNN), and pooled CNN-LSTM. The MLP model's accuracy in predicting PCMs phase transitions is validated by comparing predicted liquid fractions with numerically obtained values. Additionally, this study forecasts temperature distributions within a standard battery pack under various discharge scenarios, considering the performance of commercial lithium-ion batteries. The proposed MLP model demonstrates high efficacy, achieving a correlation of up to 0.999 and root mean squared error below 0.013 compared with numerical results.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在基于相变材料的热管理系统中利用多层感知器进行机器学习诊断
由于低温条件下电池效率降低以及车厢加热用电需求增加,电动汽车在寒冷气候条件下会遇到巨大挑战,从而影响车辆推进力。本研究旨在利用相变材料 (PCM) 实施热管理系统,并验证多层感知器 (MLP) 模型在预测 PCM 行为和电池温度分布方面的性能,从而应对这些挑战。研究采用的 MLP 模型经过 160 个不同热输入样本的训练,包括脉动温度、恒定温度、维纳温度、放电温度和随机温度。该模型将这些温度作为输入,将液体分数作为目标值。性能评估使用 MATLAB 平台进行,并以现有方法为基准,如长短时记忆 (LSTM)、时空卷积神经网络 (CNN) 和集合 CNN-LSTM。通过比较预测的液体分数和数值得出的数值,验证了 MLP 模型预测 PCM 相变的准确性。此外,考虑到商用锂离子电池的性能,本研究还预测了各种放电情况下标准电池组内的温度分布。所提出的 MLP 模型具有很高的效率,与数值结果相比,相关性高达 0.999,均方根误差低于 0.013。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
期刊最新文献
Issue Information Issue Information Optimizing heat transfer in solar air heater ducts through staggered arrangement of discrete V-ribs Experimental investigation on an innovative serpentine channel-based nanofluid cooling technology for modular lithium-ion battery thermal management Utilizing multilayer perceptron for machine learning diagnosis in phase change material-based thermal management systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1