{"title":"Combination of the biologically inspired coupled system and high-frequency surface wave radar at signal level","authors":"Hongbo Li, Aijun Liu, Qiang Yang, Changjun Yu, Zhe Lyv","doi":"10.1049/rsn2.12596","DOIUrl":null,"url":null,"abstract":"<p>Virtual aperture extension of small aperture array has attracted wide attention in high-frequency surface wave radar (HFSWR). A biologically inspired coupled (BIC) system is employed to virtually extend the array aperture. However, the existing researches on BIC only consider the array signal processing model and do not combine it with actual radar signal principle. To indeed apply the BIC system to HFSWR, two detailed methods which combine the BIC and HFSWR at signal level are proposed. A three-dimensional signal model of HFSWR considering array processing was established and the entire signal processing was derived. Then, two combination methods, namely fast-time domain (FTD)-BIC and slow-time domain (STD)-BIC are proposed. The former implements the BIC before fast-time processing, while the latter implements the BIC before slow-time processing. The authors demonstrate that they can virtually extend the array aperture without affecting the target detection. Meanwhile, their capabilities in multi-target scenarios are analysed and satisfactory conclusions are obtained. By numerical simulations and experiments, the array aperture and range-Doppler (RD) spectrum of the standard HFSWR and BIC-HFSWR are compared. The results show that while the performance of their RD spectrum is almost the same, BIC-HFSWR has an enlarged virtual aperture than standard HFSWR.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"18 10","pages":"1599-1614"},"PeriodicalIF":1.4000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.12596","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.12596","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Virtual aperture extension of small aperture array has attracted wide attention in high-frequency surface wave radar (HFSWR). A biologically inspired coupled (BIC) system is employed to virtually extend the array aperture. However, the existing researches on BIC only consider the array signal processing model and do not combine it with actual radar signal principle. To indeed apply the BIC system to HFSWR, two detailed methods which combine the BIC and HFSWR at signal level are proposed. A three-dimensional signal model of HFSWR considering array processing was established and the entire signal processing was derived. Then, two combination methods, namely fast-time domain (FTD)-BIC and slow-time domain (STD)-BIC are proposed. The former implements the BIC before fast-time processing, while the latter implements the BIC before slow-time processing. The authors demonstrate that they can virtually extend the array aperture without affecting the target detection. Meanwhile, their capabilities in multi-target scenarios are analysed and satisfactory conclusions are obtained. By numerical simulations and experiments, the array aperture and range-Doppler (RD) spectrum of the standard HFSWR and BIC-HFSWR are compared. The results show that while the performance of their RD spectrum is almost the same, BIC-HFSWR has an enlarged virtual aperture than standard HFSWR.
期刊介绍:
IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications.
Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.