Optimization of heterogeneous continuous flow hydrogenation using FTIR inline analysis: a comparative study of multi-objective Bayesian optimization and kinetic modeling
Kejie Chai , Weida Xia , Runqiu Shen , Guihua Luo , Yingying Cheng , Weike Su , An Su
{"title":"Optimization of heterogeneous continuous flow hydrogenation using FTIR inline analysis: a comparative study of multi-objective Bayesian optimization and kinetic modeling","authors":"Kejie Chai , Weida Xia , Runqiu Shen , Guihua Luo , Yingying Cheng , Weike Su , An Su","doi":"10.1016/j.ces.2024.120901","DOIUrl":null,"url":null,"abstract":"<div><div>Heterogeneous continuous flow hydrogenation is important in the chemical industry, yet the simultaneous optimization of yield and productivity has historically been complex. This study introduces a heterogeneous continuous flow hydrogenation system specifically designed for preparing 2-amino-3-methylbenzoic acid (AMA), employing FTIR inline analysis coupled with an artificial neural network model for monitoring. We explored two distinct reaction optimization strategies: multi-objective Bayesian optimization (MOBO) and mechanism-based intrinsic kinetic modeling, executed in parallel to optimize reaction conditions. Remarkably, the MOBO approach achieved an optimal AMA yield (99%) and productivity (0.64 g/hour) within a limited number of iterations. In comparison, despite requiring extensive experimental data collection and equation fitting, the intrinsic kinetic modeling approach yielded a similar optimal result. Thus, while MOBO offers a more efficient route with fewer required experiments, kinetic modeling provides deeper insights into the optimization landscape but may be impacted by non-chemical kinetic phenomena and requires significant time and resources.</div></div>","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"302 ","pages":"Article 120901"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009250924012016","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Heterogeneous continuous flow hydrogenation is important in the chemical industry, yet the simultaneous optimization of yield and productivity has historically been complex. This study introduces a heterogeneous continuous flow hydrogenation system specifically designed for preparing 2-amino-3-methylbenzoic acid (AMA), employing FTIR inline analysis coupled with an artificial neural network model for monitoring. We explored two distinct reaction optimization strategies: multi-objective Bayesian optimization (MOBO) and mechanism-based intrinsic kinetic modeling, executed in parallel to optimize reaction conditions. Remarkably, the MOBO approach achieved an optimal AMA yield (99%) and productivity (0.64 g/hour) within a limited number of iterations. In comparison, despite requiring extensive experimental data collection and equation fitting, the intrinsic kinetic modeling approach yielded a similar optimal result. Thus, while MOBO offers a more efficient route with fewer required experiments, kinetic modeling provides deeper insights into the optimization landscape but may be impacted by non-chemical kinetic phenomena and requires significant time and resources.
期刊介绍:
Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline.
Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.