Susu Jiang, Chao Chen, Wanqiu Huang, Yue He, Xuan Du, Yi Wang, Hongda Ou, Zixin Deng, Congrui Xu, Lixu Jiang, Lianrong Wang, Shi Chen
{"title":"A widespread phage-encoded kinase enables evasion of multiple host antiphage defence systems","authors":"Susu Jiang, Chao Chen, Wanqiu Huang, Yue He, Xuan Du, Yi Wang, Hongda Ou, Zixin Deng, Congrui Xu, Lixu Jiang, Lianrong Wang, Shi Chen","doi":"10.1038/s41564-024-01851-2","DOIUrl":null,"url":null,"abstract":"<p>DNA degradation (Dnd) is a widespread bacterial antiphage defence system that relies on DNA phosphorothioate (PT) modification for self/non-self discrimination and subsequent degradation of unmodified DNA. Phages employ counterstrategies to evade host immunity, but anti-Dnd immunity has not been characterized. Here we report an immune evasion protein encoded by the <i>Salmonella</i> phage JSS1 that contributes to subverting Dnd and other defence systems. Using quantitative proteomic and phosphoproteomic analyses, we show that the protein JSS1_004 employs N-terminal Ser/Thr/Tyr protein kinase activity to catalyse the multisite phosphorylation of host DndFGH. Notably, JSS1_004 also phosphorylates other bacterial immune systems to varying degrees, including CRISPR‒Cas, QatABCD, SIR2+HerA and DUF4297+HerA. Given that JSS1_004 and its homologues are widespread in phylogenetically diverse phages, we suggest that this strategy constitutes a family of immune evasion proteins that increases the chances of phage proliferation even when a host deploys multiple defence systems.</p>","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":null,"pages":null},"PeriodicalIF":20.5000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41564-024-01851-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
DNA degradation (Dnd) is a widespread bacterial antiphage defence system that relies on DNA phosphorothioate (PT) modification for self/non-self discrimination and subsequent degradation of unmodified DNA. Phages employ counterstrategies to evade host immunity, but anti-Dnd immunity has not been characterized. Here we report an immune evasion protein encoded by the Salmonella phage JSS1 that contributes to subverting Dnd and other defence systems. Using quantitative proteomic and phosphoproteomic analyses, we show that the protein JSS1_004 employs N-terminal Ser/Thr/Tyr protein kinase activity to catalyse the multisite phosphorylation of host DndFGH. Notably, JSS1_004 also phosphorylates other bacterial immune systems to varying degrees, including CRISPR‒Cas, QatABCD, SIR2+HerA and DUF4297+HerA. Given that JSS1_004 and its homologues are widespread in phylogenetically diverse phages, we suggest that this strategy constitutes a family of immune evasion proteins that increases the chances of phage proliferation even when a host deploys multiple defence systems.
期刊介绍:
Nature Microbiology aims to cover a comprehensive range of topics related to microorganisms. This includes:
Evolution: The journal is interested in exploring the evolutionary aspects of microorganisms. This may include research on their genetic diversity, adaptation, and speciation over time.
Physiology and cell biology: Nature Microbiology seeks to understand the functions and characteristics of microorganisms at the cellular and physiological levels. This may involve studying their metabolism, growth patterns, and cellular processes.
Interactions: The journal focuses on the interactions microorganisms have with each other, as well as their interactions with hosts or the environment. This encompasses investigations into microbial communities, symbiotic relationships, and microbial responses to different environments.
Societal significance: Nature Microbiology recognizes the societal impact of microorganisms and welcomes studies that explore their practical applications. This may include research on microbial diseases, biotechnology, or environmental remediation.
In summary, Nature Microbiology is interested in research related to the evolution, physiology and cell biology of microorganisms, their interactions, and their societal relevance.