{"title":"AI-driven mechanistic analysis of conformational dynamics in CNNM/CorC Mg2+ transporters","authors":"Jie Ma, Xingyu Song, Yosuke Funato, Xinyu Teng, Yichen Huang, Hiroaki Miki, Wenning Wang, Motoyuki Hattori","doi":"10.1016/j.str.2024.10.021","DOIUrl":null,"url":null,"abstract":"The CNNM/CorC Mg<sup>2+</sup> transporters are widely conserved in eukaryotes (cyclin M [CNNM]) and prokaryotes (CorC) and participate in various biological processes. Previous structural analyses of the CorC transmembrane domain in the Mg<sup>2+</sup>-bound inward-facing conformation revealed the conserved Mg<sup>2+</sup> recognition mechanism in the CNNM/CorC family; however, the conformational dynamics in the Mg<sup>2+</sup> transport cycle remain unclear because structures in other conformations are unknown. Here, we used AlphaFold structure prediction to predict the occluded-like and outward-facing-like conformations of the CorC and CNNM proteins and identified conserved hydrophilic interactions close to the cytoplasmic side in these conformations. Molecular dynamics simulations and biochemical cross-linking showed that these conserved hydrophilic interactions are stable, especially in the outward-facing-like conformation. Furthermore, mutational analysis revealed that the residues involved in these hydrophilic interactions on the cytoplasmic side are important for Mg<sup>2+</sup> transport in the CorC and CNNM proteins. Our work provides mechanistic insights into the transport cycle of the CNNM/CorC family.","PeriodicalId":22168,"journal":{"name":"Structure","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.str.2024.10.021","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The CNNM/CorC Mg2+ transporters are widely conserved in eukaryotes (cyclin M [CNNM]) and prokaryotes (CorC) and participate in various biological processes. Previous structural analyses of the CorC transmembrane domain in the Mg2+-bound inward-facing conformation revealed the conserved Mg2+ recognition mechanism in the CNNM/CorC family; however, the conformational dynamics in the Mg2+ transport cycle remain unclear because structures in other conformations are unknown. Here, we used AlphaFold structure prediction to predict the occluded-like and outward-facing-like conformations of the CorC and CNNM proteins and identified conserved hydrophilic interactions close to the cytoplasmic side in these conformations. Molecular dynamics simulations and biochemical cross-linking showed that these conserved hydrophilic interactions are stable, especially in the outward-facing-like conformation. Furthermore, mutational analysis revealed that the residues involved in these hydrophilic interactions on the cytoplasmic side are important for Mg2+ transport in the CorC and CNNM proteins. Our work provides mechanistic insights into the transport cycle of the CNNM/CorC family.
期刊介绍:
Structure aims to publish papers of exceptional interest in the field of structural biology. The journal strives to be essential reading for structural biologists, as well as biologists and biochemists that are interested in macromolecular structure and function. Structure strongly encourages the submission of manuscripts that present structural and molecular insights into biological function and mechanism. Other reports that address fundamental questions in structural biology, such as structure-based examinations of protein evolution, folding, and/or design, will also be considered. We will consider the application of any method, experimental or computational, at high or low resolution, to conduct structural investigations, as long as the method is appropriate for the biological, functional, and mechanistic question(s) being addressed. Likewise, reports describing single-molecule analysis of biological mechanisms are welcome.
In general, the editors encourage submission of experimental structural studies that are enriched by an analysis of structure-activity relationships and will not consider studies that solely report structural information unless the structure or analysis is of exceptional and broad interest. Studies reporting only homology models, de novo models, or molecular dynamics simulations are also discouraged unless the models are informed by or validated by novel experimental data; rationalization of a large body of existing experimental evidence and making testable predictions based on a model or simulation is often not considered sufficient.