Neptun Yousefi, Jenna Hannonen, Lukas Fliri, Pekka Peljo, Eero Kontturi
{"title":"Highly Charged Cellulose Nanocrystals via Electrochemical Oxidation","authors":"Neptun Yousefi, Jenna Hannonen, Lukas Fliri, Pekka Peljo, Eero Kontturi","doi":"10.1021/acs.nanolett.4c02918","DOIUrl":null,"url":null,"abstract":"Due to their exceptional properties, cellulose nanocrystals (CNCs) have been proposed for various applications in sustainable materials science. However, state-of-the-art production methods suffer from low yields and rely on hazardous and environmentally harmful chemicals, representing a bottleneck for more widespread utilization of CNCs. In this study, we present a novel two-step approach that combines previously established HCl gas hydrolysis with electrochemical TEMPO oxidation. This unique method allows the collection of easily dispersible CNCs with high carboxylate contents in excellent overall yields of 71%. The electromediated oxidation was conducted in aqueous conditions without the usually required cocatalysts, simplifying the purification of the materials. Moreover, the proposed process is designed for facile recycling of the used reagents in both steps. To evaluate the sustainability and scalability, the environmental impact factor was calculated, and a cost analysis was conducted.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c02918","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Due to their exceptional properties, cellulose nanocrystals (CNCs) have been proposed for various applications in sustainable materials science. However, state-of-the-art production methods suffer from low yields and rely on hazardous and environmentally harmful chemicals, representing a bottleneck for more widespread utilization of CNCs. In this study, we present a novel two-step approach that combines previously established HCl gas hydrolysis with electrochemical TEMPO oxidation. This unique method allows the collection of easily dispersible CNCs with high carboxylate contents in excellent overall yields of 71%. The electromediated oxidation was conducted in aqueous conditions without the usually required cocatalysts, simplifying the purification of the materials. Moreover, the proposed process is designed for facile recycling of the used reagents in both steps. To evaluate the sustainability and scalability, the environmental impact factor was calculated, and a cost analysis was conducted.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.